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Abstract 
Objectives: The principal objective of the proposed research was to integrate empirically based models 
of non-native plant invasion, fire, and native species habitat in a spatially explicit decision-support 
package that informs sustainable resource management and recovery in the face of ongoing climate 
change. The project team modeled distribution, biomass, invasion risk, and fire risk associated with the 
following non-native invasive species (NIS): African buffelgrass (Pennisetum ciliare), red brome (Bromus 
rubens), Sahara mustard (Brassica tournefortii), Mediterranean grass (Schismus spp.), and arugula (Eruca 
vesicaria sativa) on the U.S. Army Yuma Proving Ground, Barry M. Goldwater Air Force Range, Kofa and 
Cabeza Prieta National Wildlife Refuges, and Organ Pipe Cactus National Monument.   

Technical Approach: Research involved extensive field sampling efforts to train and test regional- and 
landscape-scale models of non-native invasive plant distribution and biomass. Species-specific models 
incorporated novel remote sensing techniques that identified NIS based on both phenological and 
spectral differences using satellite platforms of differing spatial, temporal, and spectral resolutions. 
Species distribution maps at landscape and regional scales were used to assess biogeographical 
relationships of invasive plants to land use and climate and to model changing invasion risk with global 
change. Biomass maps were used to model fuel loads and to predict areas of high fire risk, hazard, and 
behavior. Invasion and fire risk predictions, taking into account potential management and mitigation 
responses, were integrated with models of resource use and habitat connectivity for wildlife species. 
The research culminated with the embedding of the above results into a spatial decision-support 
package to guide management on Department of Defense (DoD) and surrounding lands. 

Results: During this project, detections of B. tournefortii and Schismus spp. were relatively common 
across the study area, whereas P. ciliare, E. vesicaria sativa, and B. rubens were relatively uncommon. B. 
tournefortii demonstrated relatively specific habitat conditions under which it becomes dominant, 
whereas Schismus spp. exhibited more generalist habitat requirements and were present in most 
sampled ecosystems. By contrast, P. ciliare and B. rubens exhibited greater invasion potential in upland 
ecosystems. E. vesicaria sativa appeared likely to spread beyond its current distribution. Modeling 
results confirmed that the advanced remote sensing and modeling techniques developed by the project 
enabled identification of NIS habitat. In particular, models derived from MODIS and Landsat TM were 
appropriate for describing the likelihood of finding B. tournefortii, due to the unique phenology of the 
species and a strong contrast with native vegetation green-up. Schismus spp. were less distinct, both 
spectrally and temporally. The use of a spatially weighted ensemble approach to mapping improved our 
B. tournefortii models, likely because spatial heterogeneity in precipitation drove phenological variability 
across the study area for this species. For both species, models were challenged by low abundances of 
the target species as a result of unusually low precipitation in both 2011 and 2012. In all, the project (1) 
generated more than 400 post-processed time series (2000 to 2014) MODIS, Landsat, WorldView-2 
(WV2), and SPOT5 images and associated derived phenometrics/indices; (2) generated probabilistic 
models of habitat suitability across the study area for all target species; (3) developed regional models 
of presence, cover, and biomass for all target species (based on MODIS, Landsat, WV2, SPOT5); (4) 
refined existing spatial databases of Schismus spp., B. tournefortii, B. rubens, P. ciliare, and E. vesicaria 
sativa occurrence for the study area and region (CA, AZ, NV, UT, NM); (5) updated regional models of 
current and future risk of invasion by B. rubens and B. tournefortii; and (6) derived regional models of 
significant fire risk under different fuel load/climate scenarios, as well as a novel regional model of fire 
connectivity. The project’s sampling design was deliberately iterative and targeted. Results from this 
design, along with the habitat suitability and occurrence models, enables mapping of key species of 
ongoing management concern over a large geographic area encompassing multiple DoD installations 
and other jurisdictions. Results also highlighted areas where ongoing or new fuels monitoring activities 
might be focused.  
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Benefits: This research effort developed new techniques, models, and maps related to fundamental 
ecological changes driven by NIS, fire, and global change in the Southwest. The research products are 
practical and relevant to management on DoD lands and across the surrounding Sonoran Desert 
ecoregion. Importantly, the approaches advanced by the project were designed to leverage multiple 
new and freely-available information sources, so that the methods would be easily transferrable and 
repeatable. The project’s assessment of landscape- and regional-scale ecological risk in a spatial 
management framework enables DoD to integrate environmental objectives with training needs, and to 
provide leadership on feasible management responses to global change. 
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Core Project Objectives 
To directly address Statement of Need SISON-10-01, the proposed research developed novel methods 
and tools that integrated models of plant invasion, fire, wildlife habitat, and climate change, and guided 
scenario-based ecological analyses at extensive spatial scales. By working at both landscape and regional 
scales, we assessed the spatial relationships between non-native plant invasion and other fundamental 
ecological processes, enabling us to provide practical management recommendations for sustainable 
military testing and training activities. Working on the U.S. Army Yuma Proving Ground (YPG) and the 
Barry M. Goldwater Air Force Range (BMGR), on the adjacent Kofa (KNWR) and Cabeza Prieta (CPNWR) 
National Wildlife Refuges, and on Organ Pipe Cactus National Monument (OPCNM), our research 
increased the ability of the Department of Defense (DOD) and regional stakeholders to identify and 
implement spatially explicit, cross-jurisdictional planning and management strategies needed to reduce 
the impact of non-native invasive plants and fire, while improving habitat for threatened, endangered, 
and at-risk species (TER-S), in the context of global change. The project had six primary technical 
objectives, with associated tasks (Figure 1): 

 
Figure 1: Relationships among the six, original primary technical objectives. Objective five was not 
pursued with SERDP funding. 
 
 
 
 
 
 
OBJECTIVE 1: Develop empirical remote sensing-based models of the distribution and biomass of non-
native invasive plants in the Sonoran Desert and surrounding ecoregions. Target species included: 
African buffelgrass (Pennisetum ciliare), red brome (Bromus rubens), Sahara mustard (Brassica 
tournefortii), Mediterranean grass (Schismus spp.), and arugula (Eruca vesicaria sativa).  
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Tasks and subtasks associated with Objective 1. 

Task # Task or Subtask 
Completion 

date 
1 Design sampling scheme 10/2010 
2 Field sampling efforts 04/2012 

2.1 Field sampling efforts (phase 1) 04/2011 
2.2 Field sampling efforts (phase 2) 04/2012 
3 Acquire and process existing Landsat/MODIS data 08/2012 

3.1 Acquire and process existing Landsat/MODIS data (phase 1) 05/2011 
3.2 Acquire and process existing Landsat/MODIS data (phase 2) 08/2012 
4 Acquire and process ancillary spatial distribution data 04/2012 

4.1 Acquire and process ancillary spatial distribution data (phase 1) 05/2011 
4.2 Acquire and process ancillary spatial distribution data (phase 2) 04/2012 
6 Non-native mapping (Landsat/MODIS) 08/2012 

6.1 Non-native mapping (Landsat/MODIS) (phase 1) 07/2011 
6.2 
6.3 
6.4 

Non-native mapping (Landsat/MODIS) (phase 2) 
Target-based mapping using WorldView data 
Phenology-based mapping of habitat suitability 

08/2012 
08/2015 
08/2015 

11 Acquire new Hyperion-hyperspectral data 10/2012 
11.1 Acquire new Hyperion-hyperspectral data (phase 1) 12/2011 
11.2 Acquire new Hyperion-hyperspectral data (phase 2) 10/2012 
12 Non-native mapping (Hyperion-hyperspectral) 05/2013 

12.1 Non-native mapping (Hyperion-hyperspectral) (phase 1) 08/2012 
12.2 Non-native mapping (Hyperion-hyperspectral) (phase 2) 12/2013 

 
OBJECTIVE 2: Model invasion risk from non-native plants under current and projected climate 
conditions.  
 
Tasks and subtasks associated with Objective 2.  

Task # Task or Subtask 
Completion 

date 
5 Compile AOGCMs 11/2010 
7 Construct BEMs 08/2012 
8 BEM uncertainty analysis 11/2012 

 
OBJECTIVE 3: Model the impacts of recent and ongoing land use disturbances on non-native plant 
invasion. 
 
Tasks and subtasks associated with Objective 3. 

Task # Task or Subtask 
Completion 

date 
9 

9.1 
Land use models of disturbance and risk 
Land use models of disturbance and risk (phase 1) 

08/2012 
06/2012 

9.2 Land use models of disturbance and risk (phase 2) 08/2012 
13 Test and refine disturbance models based on Hyperion 08/2013 

13.1 Test and refine disturbance models based on Hyperion (phase 1) 11/2012 
13.1 Test and refine disturbance models based on Hyperion (phase 2) NA 
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OBJECTIVE 4: Model the effects of increased fuel loads caused by non-native plant invasion on 
regional fire risk. 
 
Tasks and subtasks associated with Objective 4. 

Task # Task or Subtask  
Completion 

date 
10 Fire modeling outputs 12/2013 

10.1 Fire modeling outputs (phase 1) 06/2012 
10.2 Fire modeling outputs (phase 2) 12/2013 

 
OBJECTIVE 51: Model resource use and habitat connectivity for Sonoran pronghorn (Antilocapra 
americana sonoriensis) and other sensitive wildlife species. 
 
OBJECTIVE 6: Integrate the above models in a spatial decision-support package that informs 
sustainable resource management and recovery of native habitats and species on DOD and adjacent 
lands. 
 
Tasks and subtasks associated with Objective 6. 
Task 

# Task or Subtask 
Completion 

date 
14 Design and develop scenarios for decision support 06/2014 

14.1 Design and develop scenarios for decision support (phase 1) 12/2011 
14.2 Design and develop scenarios for decision support (phase 2) 12/2012 
14.3 Design and develop scenarios for decision support (phase 3) 06/2014 
15 Develop collaborative process and stakeholder workshops 06/2014 

15.1 Develop collaborative process and stakeholder workshops (phase 
1) 

11/2010 

15.2 Develop collaborative process and stakeholder workshops (phase 
2) 

11/2011 

15.3 Develop collaborative process and stakeholder workshops (phase 
3) 

11/2012 

15.4 Develop collaborative process and stakeholder workshops (phase 
4) 

06/2014 

16 Tool transfer, training, and presentations 08/2014 
16.1 Tool transfer, training, and presentations (phase 1) 12/2010 
16.2 Tool transfer, training, and presentations (phase 2) 12/2011 
16.3 Tool transfer, training, and presentations (phase 3) 12/2012 
16.4 Tool transfer, training, and presentations (phase 4) 08/2014 

 
 
  

                                                 
1 A direct analysis of wildlife populations was not funded by the SERDP Science Advisory Board, and work on 
originally proposed objective #5 (task #5; Wildlife (TER-S) modeling) was not pursued. 
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Background 
Non-native invasive plants pose a significant threat to human and ecological systems by altering 
biodiversity, function, and natural disturbance regimes (Mack 2000; Ehrenfeld 2010). Preventing new 
plant invasions is critical for reducing large-scale ecological change (Lehan et al. 2013). In arid and semi-
arid ecosystems, the positive interaction between annual and perennial invasive (native and non-native) 
grass cover, increased loading of fine-fuels, burning frequency, and fire severity illustrates the potential 
for plant invasion to substantially alter disturbance patterns, especially regional fire regimes (e.g., Balch 
et al. 2013). Increases in fire frequency, size, and intensity facilitated by invasive species can promote 
ongoing invasion, while populations of non-fire adapted native plants are more readily impacted (Brooks 
et al. 2004). Because disturbances in arid ecosystems involve slow vegetation recovery and a loss of 
native biodiversity (Steers & Allen 2010), targeted and adaptive management activities will be critical in 
mitigating the negative consequences of non-native invasive plants (Wang et al. 2014). 

In the Sonoran Desert of North America, impacts of non-native plant invasion are of 
considerable conservation concern because the region is a hotspot of biodiversity, and is subject to 
heavy influences from climate change (Seager et al. 2007; Diffenbaugh et al. 2008). Native species in the 
Sonoran Desert are likely to face reduced precipitation and increased inter-annual variability as a result 
of climate change, and the relative diversity and densities of species, as well as interspecific interactions, 
could potentially be impacted, leading to no-analog species assemblages (Davis & Shaw 2001; Williams 
& Jackson 2007). Indeed, extensive turnover in woody plant composition has already been observed in 
the Southwest, apparently stemming from extreme drought (Breshears et al. 2005). As these impacts 
demonstrate, global climate change may seriously threaten native species and ecosystems of the 
Sonoran Desert (Weiss & Overpeck 2005). 

Because of the synergy between climate change, invasive species, disturbance, and fire, 
conservation and vegetation recovery efforts should target key non-native species, likely disturbance 
areas, and areas with high fire risk in an effort to boost ecosystem resilience (McCarty 2001). Studies of 
historical fire events in the Southwest identify an increase in the number and probability of large fire 
events in recent decades (Swetnam 1990; Dickson et al. 2006), and have demonstrated a significant 
effect of invasive plant species on the frequency, severity, and extent of fire (Esque & Schwalbe 2002; 
Brooks & Matchett 2006). Furthermore, the combination of non-native plant invasion and fire also 
degrades critical wildlife habitat (Esque & Schwalbe 2002; Esque et al. 2003; Sánchez-Flores 2007), 
placing species with narrow habitat requirements, including wildlife such as the endangered Sonoran 
pronghorn, increasingly at risk. Dramatic environmental change due to the ‘invasive grass/fire cycle’ 
(D’Antonio & Vitousek 1992) is therefore well appreciated, but understanding and responding to 
changing fire risk requires an ability to predict the spatial distribution and abundance of those invasive 
grasses into the future. The development of robust predictions in turn requires model-based evaluations 
of the interactions between non-native plant invasion and fire effects, taking into account different 
climate and land use scenarios, at multiple spatial and temporal scales. In short, the full complexity of 
the system must be appreciated and taken into account by models and subsequent management 
recommendation development.  

In many cases, biological invasions are facilitated by disturbance. Factors such as fire, military 
activities, off-road vehicle use, and road construction appear to enhance the availability of resources for 
establishing organisms, enabling the spread of non-natives (Westbrook et al. 2005). Modeling results 
indicate that biological invasions in the Desert Southwest are likely to be exacerbated by climate change, 
perhaps impacting native ecosystems and species (Weiss & Overpeck 2005; Westbrook et al. 2005; 
Bradley 2009). The synergistic relationship between these drivers of environmental change may impact 
both native and, by feedback, non-native species. Understanding these linkages is a critical step toward 
the development of useful predictive models and management strategies that can effectively benefit 
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rare and sensitive species by adequately addressing biological invasions, disturbance, climate change, 
and their interaction. 

The ecology and phenology of target non-native invasive species 
Non-native plants that have been shown to boost fire frequency in the Sonoran Desert of southwestern 
Arizona include, but are not limited to: African buffelgrass (Pennisetum ciliare2; hereafter Pennisetum), 
red brome (Bromus rubens3; hereafter Bromus), Sahara mustard (Brassica tournefortii; hereafter 
Brassica), Mediterranean grass (Schismus spp.; hereafter Schismus), and arugula (Eruca sativa; hereafter 
Eruca) (Tellman 2002; Weiss & Overpeck 2005; Swetnam & Betancourt 2010). Lehmann lovegrass 
(Eragrostis lehmanniana; hereafter Eragrostis) is a non-native invasive perennial grass introduced to 
Sonoran Desert grasslands from South Africa. It has transformed desert grasslands in Arizona producing 
2 to 4 times the annual biomass of native grasses and responds positively to livestock grazing and fire 
(Van Devender et al. 1997).   

Each of these species has been considered to be expanding rapidly in population size and 
distribution in the region (Tellman 2002). These species are largely characterized by early winter 
germination, high viable seed loads, and multiple dispersal mechanisms; in combination, these traits 
result in a competitive advantage over native plants (Table 1). These non-natives can rapidly establish on 
disturbed sites, forming dense stands that displace native plants and increase flammable biomass (Van 
Devender et al. 1997). In less disturbed sites, the species can colonize via dispersal from wind, vehicles, 
and water. 
 
Table 1: Attributes of non-native invasive plant species targeted by this study. 
 

Genus Type Ecological amplitude1 
Typical growth 
period Dispersal mechanism 

Pennisetum Annual 
grass 

Desertscrub, semi-desert 
grassland, riparian 

Summer monsoon Wind, vehicle tires, 
animals 

Bromus Annual 
grass 

Desertscrub, semi-desert 
grassland, riparian 

Early winter or 
summer monsoon 

Wind, vehicles tires, 
animals, ag. products 

Brassica Annual 
herb 

Sandy and disturbed soils Early winter Wind, vehicle tires, 
animals, water 

Schismus Annual 
grass 

Desertscrub Early winter or 
summer monsoon 

Wind, vehicle tires, 
animals, water 

Eruca Annual 
herb 

Undocumented Early winter Vehicle tires 

1Principal Sonoran Desert ecological types invaded with >20% occurrence of target species 
 
Phenology is of central importance to this research. Bromus, Brassica, Schismus, and Eruca are 

annual grasses and herbs, typically germinating after winter rains (Marushia et al. 2010). Pennisetum, a 
perennial grass, begins growing after the onset of summer monsoon rainfall (Franklin et al. 2006). The 
green-up characteristics for these plants differ from those of native species, resulting in unique 
signatures in remotely sensed snapshots of the region. Non-native invasive plants in the Sonoran Desert 
also often respond to interannual temperature and precipitation variability in an amplified manner not 
seen for native communities (e.g., Bradley & Mustard 2005). Vegetation indices derived from remote 

                                                 
2 The scientific name for African buffelgrass has been updated to Cenchrus ciliaris 
3 The scientific name for red brome has been updated to Bromus madritensis 
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sensing can pinpoint these phenological differences between invasive and native plant species and thus 
be used to identify non-natives at a landscape scale. 

Remote sensing of plant phenology and invasive species detection 
Many invasive plant species can be identified via remote sensing based on annual and interannual 
phenological differences from native vegetation (Peterson 2005; Bradley & Mustard 2006). Phenological 
differences between native and non-native species have opened the door to the establishment of 
remote sensing as an indispensable tool for detecting non-native plant invasions (Lass et al. 2009). 
Earlier timing of green-up for the non-native relative to native plants has enabled remote mapping of 
the distribution of the invasive annual cheatgrass (Bromus tectorum) (Bradley & Mustard 2006), while 
responses to precipitation events reveal interannual variability that has been used to map the 
distribution of cheatgrass (Peterson 2005) and the non-native perennial Eragrostis desert environments 
(Huang & Geiger 2008). The Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 
satellite remote sensing platforms allow repeated Earth observations approximately every 2 to 16 days. 
When applied to these observations, spectral sampling in the red and shortwave-infrared regions is 
sensitive to changes in plant chlorophyll, cell structure, and moisture that can be indicative of plant 
phenology cycles (Cleland et al. 2007; Huang & Geiger 2008). Single- and multi-date airborne 
hyperspectral remote sensing platforms have been successfully used to map and monitor invasive plants 
infestations in a number of habitat conditions (Glenn et al. 2005; Asner et al. 2008; Lass et al. 2009; 
Noujdina & Ustin 2009). Satellite-based hyperspectral systems, such as the EO-1 Hyperion platform, 
have been used infrequently to map invasive plants (Pengra et al. 2007), but have the potential to 
provide global measurements of vegetation at unprecedented spectral and temporal resolutions (e.g., 
NASA HyspIRI satellite). These various sources of remote sensing data, increasing in precision and detail, 
can be applied to phenology-based mapping to produce robust and repeatable methods for identifying 
invasive plants. Particularly when invasives generate landscape-scale impacts, such as transformation of 
fire regimes, this type of landscape-scale assessment of their spread potential may be crucial to adaptive 
land management planning to mitigate threats to native biodiversity. 

Land use and plant invasion 
Disturbance is known to promote plant invasion (Hobbs & Huenneke 1992). Roads, trails, and ensuing 
traffic have led to increased invasion of non-native grasses in desert (Gelbard & Belnap 2003; Bradley & 
Mustard 2006) and prairie ecosystems (Larson 2002); the disturbed margins of routes offer free 
resources for exploitation by invaders, and human traffic along the pathways can disperse non-native 
species. The spatial distributions of invasive plants across the Sonoran Desert are likely related to 
anthropogenic disturbance. The extent and magnitude of disturbance in the region can be measured in a 
Geographic Information System (GIS) environment (e.g., Bradley & Mustard 2006) and then used in a 
predictive capacity to assess how different land use and management practices, with relation to 
disturbance, might enhance or reduce future plant invasion at the landscape scale. 

Climate change and ecological forecasting 
Terrestrial plants are strongly responsive to climate conditions, particularly precipitation and 
temperature, and invasive plant species are no exception. As climate conditions change in the Sonoran 
Desert region, the zones and land quantity susceptible to non-native plant invasion are likely to change 
as a result. Current climate projections suggest that southwestern US conditions will become drier and 
more prone to extreme drought during the 21st century (Diffenbaugh et al. 2005; Seager et al. 2007). 
Due to the life histories of individual species, seasonal changes in precipitation may be more influential 
on the persistence of many plant species than is the annual rainfall average (Bradley 2009; Bradley et al. 
2009). As an example of the complexity of seasonal precipitation projections, the median of 10 
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Atmosphere-Ocean General Circulation Models (AOGCMs) using the SRESa1b “middle of the road” 
emission scenario (Nakicenovic & Swart 2000) projects a loss of up to 20% of winter and spring 
precipitation for southwestern Arizona, with a largely unchanged summer monsoon (Figure 2). 
 

 
Figure 2: Current (2010) monthly and annual precipitation in southwestern Arizona, and median 
precipitation projection of 10 AOGCMs for 2100 using the SRESa1b emission scenario. 
 

Understanding the likely response of focal invasive species to forecasted climate changes is 
essential for developing long-term management strategies that will be robust under future conditions 
(Bradley et al. 2009). Bioclimatic envelope models (BEMs) are frequently used to describe species’ 
climatic habitats based on their current regional geographic distribution (e.g., Guisan & Zimmermann 
2000; Pearson & Dawson 2003), with the assumption that a species can be currently found in climatic 
conditions appropriate for it. Climatic habitat is defined as land area with climate conditions suitable for 
a species’ establishment (Kearney 2006). For invasive plants, the species’ climatic habitat can be 
considered at risk of invasion. BEMs, with their spatially explicit outputs, can be used to project the 
spatial distribution of invasion under both current and future climate conditions. 

The effects of increased fuel loads and treatments on fire risk 
Fire has historically been rare in the Sonoran Desert, where native plant density is generally insufficient 
to carry fire. This pattern has changed in recent decades, however. Across various vegetation 
communities of the Southwest, recent increases in fire occurrence and area burned by wildfires have 
resulted from wet periods (e.g., El Niño Southern Oscillation, or ENSO, events) resulting in high biomass 
accumulation and therefore rapid fuel buildup, followed by dry periods enhancing flammability of those 
fuels (La Niña) (Westerling et al. 2006; Swetnam & Betancourt 2010). In Sonoran Desert ecosystems, 
large, uncharacteristic wildfires are fueled and spread by contiguous beds of non-native plant biomass 
(Esque & Schwalbe 2002). The result is a vastly altered fire regime for desert regions. As a consequence 
of human activities and the prevalence of invasive species, more than 68,000 ha of the study area for 
this research has burned since 2000 (Figure 3). In 2005 alone, seven large fires burned over 52,000 ha of 
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the BMGR. The conditions leading to that heavy fire season can be examined. The winter of 2004-2005 
was one of the wettest periods recently recorded in southwestern Arizona, creating extremely high 
productivity in annual plants, both native and non-native. In September 2005, the 11,700-ha King Valley 
fire, likely ignited by munitions testing on YPG, quickly spread to the KNWR. After confronting the vast 
acreage that burned in this and other recent events, land managers in the region are aware that the 
presence and spread of non-native, fire adapted grasses and forbs (Bradley & Mustard 2006), including 
Pennisetum, Bromus, Brassica, Schismus, and Eruca, create conditions of high fire risk. Since these non-
native species are responsive to land use activities (Brown 1994) and can be both promoted and 
restrained by management activities, well-intentioned, but poorly planned, conservation or restoration 
efforts could act to benefit invasive plant species, if they do not account for the likely impacts of land 
use and climate change. 
 

 
Figure 3: Map of the proposed study extent and historical fire occurrence locations, including focal 
jurisdictions. 
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Predicting resource use and connectivity for Sonoran pronghorn and other sensitive species4 
Wide-ranging wildlife species depend on planning efforts that simultaneously consider the habitat 
quality and the ecological processes that provide critical resources and motivate animal movement 
(Dickson et al. 2005). Large and highly mobile wildlife species are commonly used as umbrella or focal 
species in conservation planning across thousands of square kilometers (Berger 2004; Sawyer et al. 
2005; Beier et al. 2006). However, land managers commonly lack the specific information needed to 
assess key features of sensitive wildlife habitat that facilitate or impede connectivity and maintain 
habitat quality in population core areas, including vegetation structure, topography, disturbance factors, 
and anthropogenic barriers or impacts (Dickson et al. 2005; Beier et al. 2006). 

The cycle that links plant community composition to fire and ecosystem processes has the 
potential to dramatically reduce habitat quality and use for the endangered Sonoran pronghorn and 
other TER-S species with narrow habitat requirements. The Sonoran pronghorn was listed as 
endangered by the U.S. Fish and Wildlife Service (USFWS) in 1967 and is one of the rarest ungulates in 
North America. The U.S. segment of the population has shown dramatic recent fluctuations, from a low 
of approximately 20 animals in 2002, to the current (2008) estimate of 124 animals. Their present range 
is restricted to southwestern Arizona and northern Mexico, with the US subpopulation occurring 
primarily on the BMGR, CPNWR, and adjacent OPCNM. From 2003-2006, a successful captive breeding 
and release effort was established on the CPNWR.  

 Sonoran pronghorn reproduction and resource use are closely tied to precipitation, which 
influences forage quantity and quality (Bright & Hervert 2005; Hervert et al. 2005). In addition, 
pronghorn are attracted to burned or disturbed areas because visibility is increased in such sites due to 
reduced density of tall shrubs and increased production of native annual forbs (Krausman et al. 2005). 
Invasive plants also thrive in these disturbed areas, but appear to receive little use by pronghorn. Thus, 
the individual and synergistic impacts of invasive plants, fire, and climate change on native habitat are 
likely to impact habitat use and connectivity for Sonoran pronghorn and other desert species in complex 
ways that are poorly understood. 

Embedding landscape models in a decision-support package to translate science to practice 
The focal study system is deeply complex. Invasive species spread is responsive to land use, disturbance, 
and climate change, and directly influences fire regimes. Understanding these linkages sufficiently to 
develop predictive models is a formidable task. The uncertainties related to climate change adds an 
additional challenge for DOD and its partners in environmental management, and requires a forward-
looking approach for considering complex ecological dynamics in the context of training needs and 
management priorities. Effective management requires informed predictions about the future, based on 
scientifically responsible, data-driven and appropriately selected and applied ecological models. 
Previous spatial decision-support efforts (Sisk et al. 2006; Hampton et al. 2008) have found that the key 
assumptions and computational complexity of ecological models can be conveyed to non-specialists 
through the exploration of alternative scenarios in map-based formats and an explicit revision/review 
process. By engaging decision-makers early, and by harnessing the power of the scientific enterprise to 
inform, rather than dictate management actions, spatial decision support can facilitate the application 
of new scientific insight to complex environmental planning and problem solving. Cutting-edge 
ecological modeling placed into a spatial management framework puts the DOD in a powerful position 

                                                 
4 Some material related to wildlife-specific research, as originally proposed for this study, has been retained for 
context only. Although a direct analysis of wildlife populations was not funded by the SERDP Science Advisory 
Board, other funds were acquired to pursue wildlife related research tasks, and these leveraged SERDP data (e.g., as 
model inputs). Nevertheless, work on originally proposed objective #5 (task #5; Wildlife (TER-S) modeling) was 
not pursued. 
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to integrate environmental objectives with training needs, and provide leadership on regional responses 
to global change. 

Research Approach 

OBJECTIVE 1: Develop empirical remote sensing-based models of the distribution and biomass of non-
native invasive plants in the Sonoran Desert and surrounding ecoregions. 

Task 1: Design sampling scheme 

Study area 
The Sonoran Desert region in which we placed this research includes a variety of federal, state and 
private lands. The majority of the study area was comprised of federal lands, including the YPG, BMGR, 
KNWR, CPNWR, and OPCNM. We excluded private property, state trust lands, and a small number of 
Native American tribal lands from the total area available to sample, since these impose different access 
and permit requirements. Ecoregions in the study area included the Arizona Upland and Lower Colorado 
River Valley subdivisions of the Sonoran Desert (Brown 1994). These ecoregions contain extensive areas 
dominated by native and non-native invasive plant species recently impacted by large-scale fire and 
other disturbances, as well as notably low precipitation (Figure 4). Long-term average annual 
precipitation (1952-2007) at the YPG and KNWR was 93 mm and 175 mm, respectively (see 
http://www.prism.oregonstate.edu/). 
 

 
Figure 4: Example of a foundational data layer (average annual precipitation, 1991-2010) used to design 
a field sampling scheme for the Sonoran Desert. 
 

http://www.prism.oregonstate.edu/
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The study area was characterized by high topographic relief, including mountain ranges 
separated by expansive desert valleys, plains, and bajadas, as well as numerous jurisdictional boundaries 
(Figure 5). Field sampling in 2011 covered 66,541 km2. In 2012, we narrowed the field sampling area to 
31,473 km2, focusing on the southwestern portion of the original study area. This shift reduced 
heterogeneity in environmental conditions, allowing us to focus specifically on areas in and adjacent to 
BMGR and YPG (referred jointly hereafter as DOD lands), to elevate the power of our analyses, and to 
increase our ability to detect our target invasive plant species.  

 

Figure 5: Boundaries of our study area in the Sonoran Desert of Arizona during the 2011 (solid line) and 
2012 (dotted line) field seasons. 

Suitability modeling to guide targeted sampling 
Prior to our field efforts, we targeted five non-native invasive plants (Figure 6), including two annual C3 
grasses: Bromus and Schismus spp. (Schismus arabicus and Schismus barbatus; hereafter referred to 
jointly as Schismus); two annual cruciferous forbs: Brassica and Eruca; and one perennial C4 grass: 
Pennisetum. Note that in 2012, we narrowed our focus to target only Brassica, Schismus, and Eruca 
since the 2011 field effort revealed only low incidence of Bromus and Pennisetum in and around DOD 
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lands. All five of these invasive species have been linked to increased fire frequency in desert 
ecosystems (Swetnam and Betancourt 1998, Tellman 2002, Weiss & Overpeck 2005). 
  

 
Figure 6: Previously mapped locations of five target species, which were used to guide field efforts in 
2011 and 2012. 
 

We designed a stratified sampling scheme to direct our field efforts (Wang et al. 2014; Figure 7). 
Stratification was based, in part, on predictions of habitat suitability for each target species and 
constrained to low slopes and proximity to roads in order to improve sampling efficiency and maximize 
detection rates over the large study area. These slope (<10 degrees) and road proximity (≤2 km from 
nearest road) constraints reduced the amount of effort required to access field locations, enabling us to 
increase sample size. Additionally, most of our focal species prefer soil conditions on low slopes. The 
road proximity threshold was based on the influence of roads as facilitators of invasion (e.g., enhanced 
moisture, fertilization, and dispersal) typical in the Sonoran Desert (Van Devender et al. 1997). We 
included all access roads visible in acquired data layers for sampling, such as rugged four-wheel-drive 
and off-highway vehicle roads with access to backcountry locations. 
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Figure 7: Points and jurisdictions sampled in 2011 (left) and 2012 (right). 
 

To identify plot locations for empirical data collection, habitat suitability models (HSMs) for each 
target species were developed using the MaxEnt software package (Phillips et al. 2006). This modeling 
leveraged known locations of invasive plant occurrence, obtained from published and unpublished 
databases, including the Southwest Environmental Information Network  (SEINET; http:// 
swbiodiversity.org/seinet/index.php), the Southwest Exotic Mapping Program (SWEMP; 
http://sbsc.wr.usgs.gov/research/projects/swepic/swemp/swempA.asp), multi-year invasive survey data 
from managers of the BLM and National Park Service (NPS), and unpublished research data from local 
and regional biologists) (see Figure 6). From these records, we obtained geographic locations (n =9,713 
total; 2,783 for Bromus, 615 for Schismus, 1,476 for Brassica, 95 for Eruca, and 4,744 for Pennisetum). 
Other suitability model inputs included spectral bands of August 2009 Landsat TM imagery (U.S. 
Geological Survey EROS Data Center, http://edc.usgs.gov), four topographic data layers derived from the 
National Elevation Dataset (NED, http://ned.usgs.gov/), average annual, summer and winter 
precipitation between 2000-2009 derived from the Parameter-elevation Regressions on Independent 
Slopes Model (PRISM, http://www.prism.oregonstate.edu/), and rasterized road data derived from the 
2003 Tele Atlas Dynamap Transportation version 5.2 product (Spatial Insights, Inc.). For topographic 
variables, we smoothed the digital elevation model (DEM) to reduce visually discernible contour and 
point artifacts and derived slope and aspect variables (sine- and cosine-transformed to represent slope 
eastness and northness). We developed a weighted representation of suitable habitats using models 
assigning specific raster cell values (as weights of habitat suitability) to derive an inclusion probability for 
each sampling location (Stevens Jr and Olsen 2004, Theobald et al. 2007). Locations were balanced 
spatially and confined to the 90th percentile of predicted habitat suitability, gentle slope (<10 degrees) 
and road proximity (within 2 km of the nearest road). In other studies, stratification applied ensemble 
forecasting to combine multiple model outputs into a single projection for reducing individual model 
errors (Araújo & New 2007; Jones et al. 2010; Le Lay et al. 2010). However in our study, locations with 
the highest habitat suitability (i.e., 90th percentile) that were completely overlapped by all five HSMs for 
each species (described below) only covered <5% of the study area, making these areas less 
representative of habitat conditions across the region. Therefore, we combined multiple models as 
described below to target suitable habitats suggested by at least one of the five HSMs for each species 
as potential sampling locations. Each plot was spatially registered to a pixel from the MODIS (250-m 
resolution) that encompassed five subplots (Figure 8). Each of these subplots was then matched with a 
Landsat-5 Thematic Mapper (TM) pixel (30-m resolution). In the field, at 25 point-intercept locations 
within each subplot, we recorded presence of individual target plants as well as other data (see below). 
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We collected herbaceous biomass of native and non-native plants at nine of 25 point-intercept locations 
within each subplot.  

 

 
Figure 8: Spatially nested field sampling design used to detect and measure non-native invasive plants. 
A) 150-m plot nested within a 250-m MODIS pixel includes five nested subplots, each centered within a 
Landsat TM pixel. Target and alternate subplots are in red and gray, respectively. Subplot sampling 
varied from 2011 (B) to 2012 (C). B) In 2011, vegetation attributes were measured at 5-m intervals. Red 
circles indicate locations where biomass was collected. C) In 2012, vegetation attributes were measured 
at 1-m intervals along five transects, and biomass was estimated using an expedited comparative yield 
based method, which involved assessing the fraction of reference biomass at all point intercepts. Shown 
in red are hypothetical locations for reference maxima for native species, Schismus, and Brassica. 
 

To characterize soil substrate types across the study area, we used the continuous spectral 
information obtained from six TM bands (bands 1–5 and 7) of eight Landsat image scenes (path/row 
p36/r37, p36/r38, p37/r36, p37/r37, p37/r38, p38/r36, p38/r37, and p38/r38) from August 2009. 
Qualitatively, spectral characteristics of soil substrates of high sand content or loose texture soils 
appeared to be highly related to the presence of three focal species (Brassica, Schismus, and Eruca). We 
obtained digital numbers for these radiometrically corrected TM images, converted them into spectral 
reflectance values, and mosaicked images using Environment for Visualizing Images (ENVI) version 4.7.1 
(ITT Visual Information Solutions, Inc.). We employed linear spectral unmixing (e.g., Wang et al. 2014) to 
estimate the proportion of sand substrate per pixel and applied a pixel growing technique (e.g., Chen & 
Stow 2002) to extract adjacent pixels within two standard deviations of the mean value of seed pixels of 
pure sand. We used pixel values from the unmixing step to represent the proportion of a pixel 
dominated by sand and assigned five sandiness categories. We overlaid the sandiness category layer 
with a buffer range placed around the center pixel of a potential location to assign the sandiness based 
on a majority count of pixels. We directed our crews to focus, when logistically feasible, on accessible 
plot locations with high to medium sandiness. 

We generated the summer Normalized Difference Vegetation Index (NDVI) for the study area 
using reflectance information of TM red and near infrared (NIR) bands (NIR-Red/ NIR+Red) to represent 
patterns of vegetation greenness. To quantify road proximity, we calculated the Euclidian distance from 
a raster cell to the nearest road. We obtained or derived all variables at a 30-m pixel resolution using 
ArcGIS version 10.0 (Esri, Inc.). 
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Using the methods and variables described above, we developed five separate HSMs for each 
species (total = 25 models) using a maximum entropy algorithm and the MaxEnt software package 
version 3.3.3e (http://www.cs.princeton.edu/~schapire/MaxEnt/) (Elith et al. 2006; Phillips et al. 2006). 
For HSMs that rely solely on presence-only data and are thus limited to sites that have been 
comprehensively surveyed, environmental conditions are typically represented by occurrence records 
and background data describing the entire region, with species occurrence data spatially biased toward 
locations with easy access. To account for such bias, it is suggested that selection of background sample 
locations be performed according to the same sampling bias as that identified for species presence 
records (Phillips et al. 2009). We employed a “bias prior” approach to derive background data based on 
the density of sampled locations of all focal species across our study area and to estimate relative 
sampling effort as recommended by Merow et al. (2013). We assigned a raster cell value of 1 to cells 
with presence records of focal species to represent sampling intensity and a “no data” value for the 
remaining cells (Syfert et al. 2013). Five separate HSMs were constructed for each target species, to 
investigate the influence of combined environmental variables. Detailed information about the 
specification for each model and the relationship between models can be found in Table 2. 
 
Table 2: Description of the variables included in habitat suitability models 1-5. An ‘X’ indicates 
that the given variable set was included in the predictor set for the model. Only one of mean 
summer or mean winter precipitation was used in models 4 and 5, depending on the species 
(summer precipitation for Pennisetum, winter precipitation for all other species).   

  
Model number 

Variable type Description 1 2 3 4 5 
Topography Elevation, slope, eastness, and northness X X X X X 
Spectral bands TM bands 1-5, 7, and NDVI X X X X X 
Precipitation (2000-
2009) Mean annual precipitation  X X 

   
 

Mean summer precipitation (7-81 mm)* 
   

X X 

 

Mean winter precipitation (10-103 
mm)** 

   
X X 

Road proximity Euclidean distance to the nearest road   X X   X 
 
Each of the 25 resulting models included a bias estimate and employed the hinge algorithm (a 

piece-wise linear regression) to produce ten replicates at the convergence threshold of 1025 (i.e., where 
model training terminated in terms of log loss per iteration). We used 60% of the total available 
occurrence data for model training and the remaining 40% for testing (Elith et al. 2006; Phillips & Dudík 
2008). We evaluated the contribution of each variable by randomly permuting the values of that variable 
among the presence and background training points and measuring the resulting decrease in training 
area under the receiver operating characteristic (ROC) curve (AUC) (Phillips 2005). A large decrease 
indicated a strong dependence on that particular variable. As another assessment of variable 
importance, we omitted each variable in turn and then used it in isolation (Phillips 2005). The use of 
training and test gain provided an assessment of the amount to which the variable, when omitted or 
used alone, affected model gain. By contrast, the use of AUC provided information on how the variable 
influenced the model in predicting presence in the data. 

To evaluate model performance, we used three threshold independent assessment measures. 
This enabled us to avoid using arbitrary binary threshold presence/absence when the assumption for the 
threshold could not be validated. We constructed null models using random points to confirm that our 
HSMs for each species had significantly higher values of training AUC than did random models (α = 0.05) 
(Raes & ter Steege 2007). We used AUC values of > 0.70 to determine acceptable model performance 
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(Swets 1988; Hosmer Jr & Lemeshow 2004). We calculated the point biserial correlation (COR) as a 
Pearson’s correlation coefficient r between predicted suitability and presence/pseudo-absence of the 
test data to examine the relationship between predicted suitability and the probability of presence of 
each focal species (α = 0.05) (Phillips & Dudík 2008). 

Winter precipitation in 2010-2011 was below average across the region, and subsequent winter 
germination, cover, and biomass of both natives and invasives were consequently low. Modifications to 
our sampling protocols in 2012 were intended to increase sample size and target species detections, and 
to improve biomass sampling efforts. In addition, 2012 sampling efforts targeted areas where Brassica, 
Schismus, and Eruca were known or likely to occur. We developed new habitat suitability models using 
the data collected in 2011 to supplement primary source data used for landscape stratification, and the 
70th percentile of suitability based on these new models was targeted in 2012. We further restricted 
areas for sampling using the relative NDVI of MODIS imagery obtained in 2012: that is, we limited 
sampling to areas in which the maximum spring NDVI divided by the mean spring NDVI between 2001 
and 2010 exceeded the 60th percentile. This calculation identified locations that had very high relative 
vegetation ‘green-up,’ compared with average greenness, in indication of particularly strong herbaceous 
growth during a very wet growing season. Plots were further stratified to target locations with greater 
than average MODIS NDVI acquired in early 2012. This focused sampling on areas that had received 
sufficient precipitation in winter 2011/spring 2012 to initiate germination and seedling growth, and is 
important in the target system because there is high spatial variation in individual desert precipitation 
events.  

We used more of a ‘clustered’ sampling design in 2012 to increase our sample size by reducing 
travel time among sampling locations (Figure 7). Despite potential bias introduced by sampling at 
clustered locations, certain statistical estimators can provide unbiased estimates of abundance and 
density for species with low abundance in local populations (Philippi 2005; Sullivan et al. 2008). To 
perform this sampling, we first identified a pool of 2,500 stratified random, spatially balanced sampling 
locations. We then constrained this pool of potential sampling locations to clusters of 4-5 locations 
within 450-650 m of one another. Each location relied on the same plot and subplot configuration used 
in 2011, and field methods were similar between years (Figure 8). Crews sampled an average of five 
clustered plots per day, maintaining a minimal travel distance between daily clusters of 10-20 km. 
Within five subplots at each plot, biomass was collected at zero, one, or two subplots. We used a 
modified ‘comparative yield method’ to estimate biomass production (Haydock & Shaw 1975). That is, at 
each subplot, we rapidly identified the presence of our target species (non-native herbaceous cover 
types) as well as native herbaceous cover types (e.g., perennial grass, annual grass, forb). We then 
systematically evaluated the maximum biomass of each herbaceous cover type within the subplot by 
clipping biomass of the target species and native herbacious species within a 0.25 m2 hoop (BLM 1996; 
Despain & Smith 1997) at the two respective locations, and labeled these values as reference maxima 
for each cover. Samples were oven dried and weighed to obtain dry weights of maximum herbaceous 
biomass for native and non-native plants. We used point intercept sampling at 1-m intervals along five 
20-m transects to record the presence of each target species and herbaceous cover type. Herbaceous 
cover was ranked as a fraction, in increments of 25%, of the reference maximum for that cover type. 
Subplot herbaceous biomass was estimated by multiplying the percentage of intercepts of each 
herbaceous cover type by the mean biomass rank for that cover type, summed over all cover types 
within a subplot. A schematic of the layout of the subplot with three example reference maxima is given 
in Figure 8C.  

Relating habitat suitability models to field detections in 2011 
We used a generalized linear model (GLM) that assessed detection (as a binary presence/absence 
outcome for each focal species at each subplot) and habitat suitability, as predicted by each HSM. We 
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modeled the detection of each focal species with a binomial distribution and a logit link function in the R 
statistical package version 3.0.2 (http://www.r-project.org). This analysis provided an indication of how 
well the HSM-informed stratification identified sampling locations where species detections were more 
likely. To assess model fit, we calculated the difference in values of Akaike’s Information Criterion (ΔAIC; 
Burnham & Anderson 2002) between a detection model that included predicted habitat suitability and 
an intercept-only model. Suitability models with ΔAIC >10 were considered good approximations of the 
data (Burnham & Anderson 2002). 

Task 2: Field sampling efforts 
To match our field data to the spatial resolution of the remote sensing platforms we sought to use for 
occurrence modeling, we adopted a nested plot design creating approximate alignment between 
sampled locations and satellite image pixels (Kalkhan et al. 2007, Wang et al. 2014). We spatially geo-
registered each plot with a MODIS image pixel (250 x 250 m) and geo-registered each of five nested 
subplots with a Landsat TM image pixel (30 x 30 m; Figure 8A). This process precisely matched field data 
with the pixel location and resolution of both sensor types (i.e. MODIS and TM) used for developing 
time-series and phenology-based models of non-native invasive plant occurrence (Olsson et al. In prep.). 
Co-registered and multi-scaled plots were used to reduce error introduced by mismatches of scale and 
location between field and remote sensing data (Xu et al. 2009). In the field, crews used the geographic 
coordinates of the pixel corner of subplots and navigated to the corner using a Magellan MobileMapper 
6 Global Positioning System (GPS) receiver. At point intercepts within subplots, placed along five 
transects at every five meters, we recorded species name and substrate at each point intercept for both 
native and non-native invasive plants, as well as presence/absence of our focal species and disturbance 
types.  

Task 3: Acquire and process existing satellite data 
A major goal of this research was to assess satellite image trajectory-based invasive plant detection and 
mapping approaches. We investigated two particular approaches to do this: a multi-temporal 
multispectral approach based on Landsat Thematic Mapper (TM) and MODIS, and a multi-temporal 
hyperspectral approach designed to test the feasibility of the future planned Hyperspectral Infrared 
Imager (HyspIRI) mission. Testing of the hyperspectral approach was the second of two Go/No-Go 
decision points for this project (see below). In light of our decision to not proceed with this approach 
(No-Go), we performed an alternative task (focused on use of WV2 imagery; see below) with the 
potential to be more relevant to DOD and adjacent land managers, given ongoing and mounting 
challenges faced by National Aeronautics and Space Administration’s (NASA) Earth Observation 
program.  

We acquired all available cloud-free Landsat TM and MODIS composite vegetation index (VI) 
data (MODQ13A1) for the study area for the time period from January 1, 2000, to June 1, 2012. Vis, such 
as NDVI are correlated with photosynthetic activity and are sensitive to differences in plant production, 
leaf area index, and phenology cycles (Steltzer & Welker 2006; Pennington & Collins 2007). We derived 
models at the 30-m and 250-m resolution for Landsat TM and MODIS-based models, respectively. The 
models were based on common treatment of dynamic (e.g., satellite imagery) and static (e.g., 
topography) data. Spatial data were derived from three data sources: MODIS satellite imagery, Landsat 
TM satellite imagery, and NED 30-m data products. MODIS satellite imagery was used to derive 
phenology estimates for each season (winter/summer) and year, whereas TM and NED datasets were 
used as static layers to account for albedo and topography, which were consistent over our period of 
study (Crist 1985).  

The WV2 satellite remote sensing system is a relatively new, high spatial resolution (2.4 m 
pixels) sensor that produces 8-band multispectral imagery (Kruse & Perry 2013). WV2 has the capacity 
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to enable detection of small populations of desert plants due to its high spatial and spectral resolution 
and bands in the red (630 to 690 nm), red edge (705 to 745 nm), and near-infrared (770 to 895 nm and 
860 to 1040 nm) spectral regions. Vegetation classification potential of WV2 imagery has been 
demonstrated for forested environments, where the high spatial resolution allowed classification 
accuracies of 98% (Ozdemir & Karnieli 2011; Garrity et al. 2013). Latif et al. (2012) and Immitzer et al. 
(2012) used the high spectral resolution of WV2 imagery to successfully differentiate tree species 
(overall accuracy of 82%), although producer’s accuracy (or the probability that pixel classifications 
correctly represented ground cover) at the species level ranged from 33% to 92% (Immitzer et al. 2012). 
Other demonstrated uses of WV2 data have included increased classification accuracy for tree species 
differentiation in a savanna ecosystem (Cho et al. 2012), delineation of cover types in urban areas 
(Zhang & Kerekes 2011; Longbotham et al. 2012; Pu & Landry 2012), and coral reef detection in marine 
environments (Botha et al. 2013). The utility of WV2 imagery for mapping invasive plants is likely to be 
powerful in hot desert environments, where invasive species can exhibit large interannual variability in 
distribution and abundance. 
 Because they were tied directly to the development of non-native mapping steps and products, 
additional, specific data acquisition and processing steps are detailed in Task 6 below.  

Task 4: Acquire and process ancillary spatial distribution data  
Ancillary spatial data associated with this task are described in Task 3 above, as well as steps taken in 
non-native mapping efforts (Task 6). 

Task 6: Non-native mapping (Landsat/MODIS/WV2) 
We applied a range of methods to different efforts to model and map the distribution of our non-native 
target species. Here we detail five distinct efforts.  

A comparison of Landsat TM and MODIS vegetation indices for estimating phenology5 
For this mapping effort, our primary objective was to identify the best available VI and image data 
source to estimate annual and seasonal vegetation phenology in areas of steep terrain, testing our 
approach on areas occupied by sensitive species of wildlife. We also explored image-processing methods 
to reduce atmospheric and terrain impacts on TM data and determined relationships between 2007 and 
2008 weather patterns and VI variability. 

A time series of VI values for the full 2008 calendar year was used to estimate phenologic cycles 
and periods of increased plant productivity (green-up) for single image dates relative to average annual 
vegetation conditions. Pixel values indicate either a greener than average (positive departure from the 
annual average) or less green (negative departures) per-day quantity for locations on the ground. 
Departures from average (DA) values provide a standardized scale to quantitatively compare different VI 
for characterizing vegetation green-up and senescence periods. 

A total of 13 cloud-free TM images and 23 MODIS 16-day VI were downloaded from the USGS 
Global Visualization Viewer (http://glovis.usgs.gov/). An atmospheric correction was applied to TM 
images using ENVI v4.5 software and the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) model (ITT Visual Data Solutions 2008) prior to deriving VI. This processing corrects for 
upwelling path radiance scattered from adjacent pixels. We compared corrected and uncorrected red 
and NIR TM bands used to derive VI for invariant sand targets (pixels) on relatively level terrain. 

                                                 
5 These methods have been peer-reviewed and published in Sesnie, S. E., B. G. Dickson, S. S. Rosenstock, and J. M. 
Rundall. 2012. A comparison of Landsat TM and MODIS vegetation indices for estimating forage phenology in 
desert bighorn sheep (Ovis canadensis nelsoni) habitat in the Sonoran Desert, USA. International Journal of Remote 
Sensing 33:276-286. 
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To examine terrain effects on VI, we identified areas potentially shaded at some times and 
locations unlikely to be shaded by surrounding terrain at any time of the year using NDVI and EVI values 
to obtain the percentage departure value of pixels. Although the amount of plant production differs 
among sites, temporal patterns in plant phenology, driven by seasonal rainfall and day length 
influencing the amount of photosynthetically active vegetation, are expected to be similar. Thus, low-
productivity sites characteristic of arid lands will be likely to show positive departures from the annual 
average VI values when even minor increases in green vegetation occur (Van Leeuwen et al. 2010). 
DA values were calculated as follows: 

 

𝐷𝐷𝐷𝐷 =
𝑉𝑉𝑉𝑉𝑠𝑠
𝑉𝑉𝑉𝑉𝑚𝑚

 

 
where VIs is the VI value for a single image date, and VIm is the mean pixel value for the time series. DA is 
calculated for a particular image date in the series multiplied by 100 to estimate each pixel’s percentage 
departure from the annual average (Beck & Gessler 2008). 

We developed a hillshade model using a 30-m DEM and spatial analyst extension in ArcGIS v. 
9.3. The model predicts shade based on the predicted shadows cast at the lowest sun elevation angle 
(28.7◦) and highest solar azimuth (151.7◦), to match a January 2008 TM image date. Areas greater than 5 
ha in size with a hillshade value of 0 (shaded areas) were used to identify and extract shaded VI pixels 
from all image dates. To identify unshaded pixels, 100 random points were distributed across the study 
area on slopes <1%. Each point was buffered with a 1500 m radius polygon. Polygons located over areas 
of contiguously low slope angle (n = 27) were used to identify non-shaded VI pixels from the image time 
series. To assess the sensitivity of VI to topographic relief, quantitative comparisons were made 
between (1) mean NDVI and EVI DA´ values extracted from shaded areas at each image date and (2) 
mean VI values extracted from each shaded area during the month of January, when sun angle was 
lowest. Data were evaluated for normality using a Kolmogorov–Smirnov test and compared using 
nonparametric Mann–Whitney rank sum or t-tests (α = 0.05) using the SigmaPlot v. 11 statistics 
software package (Systat Software 2008). MODIS-based VIs were also compared by examining residual 
DA values for each month on both shaded and unshaded terrain. The absolute difference between EVI 
and NDVI departure values in shaded areas were compared to the absolute difference between the two 
VIs in unshaded areas using a Mann–Whitney test. 

Temperature and precipitation data collected between January 2007 and December 2008 were 
used to determine linkages between VI and periods of increased desert vegetation productivity and 
green-up. 

Use of WorldView-2 high spatial resolution imagery to detect desert invasive plants 6 
For this analysis, our objectives were to: (a) examine the utility of WV2 data for mapping small 
populations of Brassica in the Sonoran Desert study region, and (b) compare WV2 classification 
performance with the more readily available Landsat Enhanced Thematic Mapper Plus (ETM+) imagery. 
Through this comparison, we evaluated whether higher spatial and spectral resolution imagery could 
improve detection of small populations of invasive plants in desert environments. Importantly, this new 
effort was approved by Strategic Environmental Research and Development Program (SERDP) program 
staff in place of subtask 12.2.  

 

                                                 
6 These methods have been peer-reviewed and published in Sankey, T., B. Dickson, S. Sesnie, O. Wang, A. Olsson, 
and L. Zachmann. 2014. WorldView-2 high spatial resolution improves desert invasive plant detection. 
Photogrammetric Engineering and Remote Sensing 80:885-893.  
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Field Data Application 
Field data on the presence or absence, cover, and biomass of Brassica was collected at multiple 
sampling locations between February and April 2012. Prior to field sampling, the study area was 
stratified as described above, based on a species distribution model for Brassica and a prediction of 
habitat suitability. The approach used specific raster cell values (i.e., weights of habitat suitability) to 
determine the inclusion probability of a location to be sampled (Stevens Jr & Olsen 2004; Theobald et al. 
2007).  

At each sampling subplot, we navigated to the southwest corner. The entire subplot was 
searched systematically to determine the presence or absence of the target plant species, Brassica. 
Next, the point intercept method was used to record the presence or absence of the target species and 
three other herbaceous cover types: perennial grass, annual grass, and forb. The point intercept method 
was employed at 1 m intervals, resulting in a total of 100 points per plot, which were then directly 
converted into percent cover estimates of the target species and the three herbaceous cover types at 
the 30 m plot scale. 
 
Image Preprocessing 
To evaluate non-natives in our study area, images from both WV2 and ETM+ satellite sensors were 
collected during the peak winter growing season period for native and non-native annual plants. Ten 
WV2 scenes from the study area were selected. The swath width of each WV2 scene is 16.4 km. The 
scenes were acquired between 04 to 10 February 04 2012 and delivered in calibrated radiance in 2.4 m 
resolution with ~5 m geometric accuracy. Multispectral bands were delineated: coastal (0.477 μm), blue 
(0.477 μm), green (0.546 μm), yellow (0.607 μm), red (0.658 μm), red edge (0.723 μm), near-infrared 1 
(0.831 μm), and near-infrared 2 (0.908 μm). One ETM+ scene (Path 38 and Row 37) from 23 February 
2012 was used, encompassing all of the WV2 scenes, with all bands except band 6. To preprocess 
images, both the WV2 and ETM+ data were corrected for atmospheric effects using the FLAASH module 
in ENVI image processing software v. 4.8 (ITT Industries Inc., 2008, Boulder, Colorado) and projected in 
UTM Zone 11N and NAD 1983 projection and datum. The WV2 images were orthorectified using a 10-m 
DEM (www.ned.usgs.gov). All images were co-registered to orthorectified 2007 NAIP digital imagery. All 
Root-Mean-Square error (RMSE) were < 1 pixel).  

Calculation of NDVI 
WV2 data have two near-infrared bands: band 7 (0.831 μm) and band 8 (0.908 μm). Each near-infrared 
band allows the calculations of an estimate of NDVI (hereafter referred to NDVI-B7 and NDVI-B8, 
respectively). NDVI-B7 and NDVI-B8 were calculated using the following equations for both WV2 and the 
resampled WV2. ETM+ NDVI was also calculated using the bands 3 and 4:  

 

𝑁𝑁𝐷𝐷𝑉𝑉𝑉𝑉 =
𝐵𝐵5 − 𝐵𝐵7
𝐵𝐵5 + 𝐵𝐵7

 

 

𝑁𝑁𝐷𝐷𝑉𝑉𝑉𝑉 =
𝐵𝐵5 − 𝐵𝐵8
𝐵𝐵5 + 𝐵𝐵8

 

MTMF Classification  
Mixture-Tuned Matched Filtering (MTMF) is a spectral mixture analysis technique which estimates the 
relative proportion or abundance of a target cover type within each pixel (Root et al. 2004; Hunt Jr & 
Parker Williams 2006; Mladinich et al. 2006). Spectral mixture analysis techniques are especially useful 
in arid and semi-arid environments, where a mixture of bare ground and vegetation is common within 
pixels (Noujdina & Ustin 2009; Sankey et al. 2010). Linear spectral mixture analysis produces a mixture 
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representing a linear combination of the cover types weighted by the coverage of each cover type in a 
pixel (Rencz 1999). Compared to linear spectral unmixing models, MTMF suppresses background noise 
and provides a measure of false positive detection of target cover (Boardman 1998), which can occur 
frequently in remote sensing of arid and semi-arid vegetation (Okin et al. 2013).  

To estimate sub-pixel Brassica abundance and map its presence/absence, all images from our 
study area were forward transformed using the Minimum Noise Fraction (MNF) rotation and classified 
using the MTMF technique in ENVI software. The MTMF classification was performed with: (a) WV2 
imagery in their original pixel size (hereafter referred to as WV2), (b) WV2 data resampled to a 30-m 
pixel size (hereafter referred to as resampled WV2), and (c) ETM+ imagery.  

An advantage of the MTMF technique is that it requires endmember (EM) training spectra for 
target species as inputs, but does not require training spectra for background or non-target species. EM 
spectra for Brassica was derived from field measurements of healthy green Brassica plant canopy 
reflectance (350 to 2500 nm) using an ASD, Inc. FieldSpec 3Max spectrometer. Reflectance was 
measured via a series of five assessments (25 replicates per measurement) per plant using a bare 
fiberoptic cable with a 25° field of view at 45 cm above plants with dense, closed canopies. Reflectance 
was calibrated between samples using a non-calibrated diffuse white reference panel (ASD, Inc., 
Boulder, Colorado). Spectrometer measurements were acquired under clear sky conditions within one 
hour of solar noon on 24 February 2012. The mean value for all Brassica reflectance spectra was used as 
a single composite EM.  

The MTMF classification produces two images that can be used together to classify a target 
cover: (a) matched filtering (MF) scores that estimate the target cover abundance within each pixel, and 
(b) infeasibility values which represent the likelihood of false positives in the MF scores. An MF score 
near 0 indicates background noise, while a score of 1 corresponds to approximately 100% cover of the 
target spectrum within a pixel. MF scores have been used to directly estimate sub-pixel target cover 
abundance, and have demonstrated correlation with field-based estimates of target canopy cover (R2 
ranging from 0.32 to 0.69) (Williams & Hunt 2002; Mundt et al. 2007; Mitchell & Glenn 2009; Sankey & 
Glenn 2011). MF, however, tends to underestimate abundance and present a complex mathematical 
problem (Mitchell & Glenn 2009) because unconstrained estimates within pixels can result in negative 
target cover values as well as values greater than 100%, representing a disconnect with field-based 
cover estimates ranging from 1 to 100%. There is in addition no automated method to combine the MF 
scores with the infeasibility values to reduce false positives in MF. 

For these reasons, a user-defined approach was used to produce a final map of target cover 
(Mundt et al. 2007). The relationship between the MF scores and infeasibility values for all images was 
examined using a regression approach (Sankey et al. 2010). The best fit regression model was chosen for 
each image type based on its statistical significance (α = 0.05 for all variables), the value of the coef-
ficient of determination (R2), and model simplicity (i.e., fewer variables were preferred over more 
complex models with small increases in R2). Three quadratic polynomial regression models were chosen 
to combine the MF scores and the infeasibility values in the WV2, resampled WV2, and ETM+ images, 
respectively: 

 
 Y = 2.34 + 22.59*MF + 103.72 *MF2 

 Y = 2.39 + 28.53*MF + 507.84* MF2 

 Y = 0.64 – 0.97*MF + 0.05* MF2 
 

where the infeasibility values were the response variable and the MF scores, and quadratic terms were 
the predictor variables. After the regression models were fit to each image, all pixels that fell below one 
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positive standard deviation above the regression curve and had MF scores of 0 to 1 were classified as 
Brassica presence, with other pixels classified as Brassica absence. This approach allowed exclusion of 
negative and >1 MF scores, which fall outside the field-based estimates of canopy cover and indicate 
target cover absence. The regression curve provides an objective and quantitative approach for 
determining a threshold in the infeasibility values. The positive standard deviation above the regression 
curve increases true positive detection by raising the upper limit of the infeasibility values while still 
limiting unacceptably large infeasibility values and keeping the MF scores within the 0 to 1 range 
(Sankey et al. 2010). No minimum threshold was necessary for the low infeasibility values. Using these 
methods, three separate binary maps of Brassica presence/absence were produced: one at 2.4m 
resolution and two at 30 m resolution.  

Accuracy Assessment 
Field data were used to assess the accuracy of the binary classifications of Brassica presence/absence 
(Story & Congalton 1986). The binary map at 2.4 m resolution was compared to field point data 
gathered along the line transects. Of a total of 27,100 field points, 700 points (equally divided between 
presence and absence) were randomly selected over the entire area encompassing the images, ensuring 
that the selected points were spatially independent to minimize spatial autocorrelation. The field-
mapped points were buffered with a 30 m radius to re-enforce a minimum distance between the 
selected points, because (a) point intercept sampling was used at intervals of only 1 m, and neighboring 
points could be highly spatially autocorrelated, (b) GPS horizontal errors ranged up to 6.7 m, and (c) the 
WV2 data geometric accuracy was 5 m with RMSE <1 pixel. The buffering ensured that absence points 
with no target species present within a distance of two pixels were selected as absence pixels. The two 
binary maps at 30 m resolution were compared to a set of similarly selected random points of Brassica 
presence (n = 370) and absence (n = 524) within the 30 m plots. 

MF scores were also correlated with the field-based Brassica percent cover estimates using a 
simple linear regression. Only the resampled WV2 and ETM+ MF scores were analyzed, since Brassica 
percent cover estimates were made at the 30 m plot scale. Brassica percent cover estimates were 
divided into three bins with 10 percent incremental increase (i.e., 1 to 10%, 10 to 20% and >20%) to 
determine if a potential detection threshold existed.  

Last, the maximum biomass references for Brassica and native herbaceous cover measured at 
the point locations were correlated with the WV2 NDVI estimates, while the Brassica biomass and total 
herbaceous biomass estimates at the 30 m plot scale were correlated with NDVI estimates from the 
resampled WV2 and ETM+. 

Target-based mapping using field-based spectra and WorldView imagery  
We recently developed new methods using WorldView-2 that data were effective for mapping Brassica 
in the Sonoran Desert (Sankey et al. 2014). We extended these methods to another highly invasive non-
native plant, Eragrostis, in the spatial context of semidesert grasslands on Buenos Aires National Wildlife 
Refuge (BANWR) located in southern Arizona (Figure 9).  

Eragrostis has replaced native grasses and formed extensive areas of high biomass on BANWR 
exceeding 1200 kg/ha (Sesnie, unpublished data). Our specific objectives were to 1) collect target 
invasive plant field spectra and WorldView-2 (WV2) imagery over areas of high and low target species 
abundance, 2) develop spectral mixture analysis techniques for mapping target species, and 3) compare 
detection methods using field- and image-collected spectra to intensively sampled field plot and cover 
data to assess accuracy.  
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Figure 9: Focal area (red boundary) for detection of Eragrostis detection using WorldView-2 on BANWR 
(black boundary). 2013 sample plots are represented as black dots. 
 
Analysis approach 
Combining surface reflectance from satellite imagery and target spectra have been found to reduce 
uncertainty of vegetation classification (Asner & Green 2001). We tested two techniques to detect and 
map Eragrostis with WV2 reflectance and species reflectance data. One technique used spectra 
collected in the field with an ASD FieldSpec3 and the other used image-collected spectra from plot 
locations with high target species cover ≥ 45%. Previous studies have applied sub-pixel classification 
techniques, such as the MTMF with coarser resolution data such as Landsat TM and ETM+ (Root et al. 
2004, Mladinich et al. 2006, Williams & Hunt 2002). These techniques have not been widely applied to a 
new generation of high-spatial and moderate spectral resolution satellite sensors. We combined field 
spectra with high spatial and spectral resolution WV2 imagery and advanced target detection method of 
MTMF (see above) to map invasive plants. One of the MTMF products is the MF scores, which estimate 
the target cover abundance within each pixel. MF scores have previously been shown to provide a direct 
estimate of sub-pixel target cover abundance and correlated with field-based estimates of target canopy 
cover (Williams & Hunt 2002, Mitchell & Glenn 2009). 
 
Image acquisition 
We used WV2 sensor satellite imagery data acquired 29 Sept 2013 at the basic 1B level of calibrated 
radiance during the peak summer growing season with no cloud cover  Multispectral bands were used in 
this study: coastal (0.427 um), blue (0.478um), green (0.546 um), yellow (0.608 um), red (0.659 um) red 
edge (0.724 um) near-infrared 1 (0.831 um) and near-infrared 2 (0.908 um). The image was 
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orthorectified (ERDAS 2013; RMS ≤ 0.5) and we applied radiometric calibration and atmospheric 
correction using FLAASH with the ENVI 5.2 (Exelis Visual Information Solutions, Boulder, Colorado) 
convert at sensor reflectance to surface reflectance values. This step was used to assure that target 
species spectral reflectance values in the WV2 image match those collected from plants on the ground 
as closely as possible. A potential disadvantage of WV2 sensor is that it does not collect data in spectral 
regions sensitive to aerosols and water vapor that are now integrated into the WV3 sensor for 
atmospheric correction, similar to other satellite sensor technologies such as Landsat 8 and MODIS (Roy 
et al. 2014).   
 
Field plot data collection  
Plant canopy cover measurements on plots (2012-2014) followed peer-reviewed techniques described 
in the NPS Sonoran Desert Network (SODN) Terrestrial Vegetation and Soil Monitoring Protocol and 
Standard Operating Procedures that incorporate fuels and other fire related measurements (Hubbard et 
al. 2012). Vegetation plots measured in 2013 also follow NPS protocols. Point intercept methods were 
used to measure species, height and cover for trees, grasses, forbs, shrubs and subshrubs on plots. A 
total of six 20-m transects spaced 10-m apart were used to record plant genus and species at each 0.5 m 
interval along a tape (n = 240 intercepts/plot, Figure 10). Percent plant canopy cover by species was 
estimated on each plot using number of intercepts per species ÷ 240 * 100. For remote sensing 
applications, a data processing script was developed to use point intercepts from the tallest of three 
height strata (0.0 – 0.50 m, 0.50 – 2.0 m, >2.0 m) with a plant species recorded to estimate percent 
overstory plant canopy cover. All plot and plant species data were processed using the R statistics 
package v. 3.1.2 (R Core Team 2015). All plots were georeferenced with a Trimble GeoXT with 
GPSCorrect and differentially corrected to within 1-m horizontal accuracy using GPS Pathfinder Office 
software v. 5.6 (Trimble Navigation Ltd. 2013).  

    Figure 10: Vegetation plot sampling methods from Hubbard et al. (2012).  
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Field spectra collection  
Field-based in-situ spectral radiance measurements from target Eragrostis and non-target classes were 
collected with bare fiber, between 10am – 1pm, within one meter of the target object throughout 
BANWR with the Analytical Spectral Device (ASD) FieldSpec 3 Max portable spectrometer during August 
2014 (Figure 11a). Its wavelengths range from 350 - 2500 nm, collecting across the VIS/NIR/SWIR 
spectrum, with a sampling interval 1.4 nm for the spectral region 350 – 1000 nm and 2.0 nm for spectral 
region 1000 – 2500 nm, and a spectral resolution of 3-10 nm  (ASD, 2008). Reflectance was calibrated 
between samples using a non-calibrated diffuse white reference panel.  We calculated relative 
reflectance for each class in ViewSpec Pro 6.2 (ASD, Inc. Boulder, CO) with 5 measurements of 2 
acquisitions of each object’s radiance values. This process calculated the mean spectral reading for each 
of 8 classes and converted them to reflectance values. The mean value for all Lehman and each non-
target species was used as the composite EMs. These reflectance spectra were taken into ENVI 5.2, 
converted to a spectral library, convolved to WV-2 reflectance spectra, which reduce the available band 
wavelengths to 350 – 950 nm (Figure 11b). These wavelengths provided the basis for field-collected 
spectra EMs for WV2 image classification.   
 

 

 
 
Figure 11: To integrate field-collected spectra with a data sensor, spectra must be convolved (or cleaned 
and fit) to that sensor’s bands. A) Field collected target and non-target spectra prior to convolve and B) 
field collected target and non-target spectra convolved to WorldView-2 imagery. 
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Image-based spectra collection 
Image-collected spectra or EM pixels representative of species targets (e.g. Eragrostis) were selected 
from field plots with high percent cover. To select EMs and reduce temporal variability between field 
plot data and image acquisition date we subset the plots sampled in 2013 to match the WV2 image 
date. For this subset of plots, we used plant cover data summarized by life form to select those with 
high herbaceous cover (≥ 60%), and low tree, shrub and subshrub cover, 0%, 10%, 10% respectively. 
Only remaining plots with >45% Eragrostis canopy cover were selected as EMs. Associated field plot 
photos were reviewed to confirm features, density of target species and stages of green-up of the 
species of interest.  

Phenology-based mapping of habitat suitability using Google Earth Engine  
Our original objective was to develop a phenology-based model of occurrence (in which the presence of 
a target species at a given location is predicted solely as a function of phenology variables) as an input to 
a model of habitat suitability (‘landscape risk’) for each species. The habitat suitability model was to be 
conditioned on landscape and climatic, but not phenology, variables. However, the use of phenology 
variables alone failed to produce occurrence models that were strong enough to support the hierarchal 
modeling procedure described above. Thus, we decided to fit a single occurrence model for each species 
that considered meteorological, geomorphological, and vegetation and surface reflectance variables 
simultaneously. While it is possible to bias suitability (potential habitat) by using remotely sensed data 
that reflect the unique spectral or temporal characteristics of the target species (Bradley et al. 2012), we 
believe that the coarse spatial resolution (~250m) of inputs, in addition to the way in which we derived 
the vegetation and surface reflectance variables, has alleviated this concern.  

Because our models capture variables related to process (e.g., drought, or the rate of greenup in 
a given season) in addition to pattern (e.g., topographic position), the occurrence models produced in 
this phase of work can be used to generate predictions in high-risk (wet) years as well as low-risk (dry) 
years. It is our expectation that such an approach can be used to monitor the development of 
vegetation and potentially hazardous conditions in any given year and to evaluate landscape risk across 
years.  
 
Combined (2011-2012) field data 
Every record (N = 742) in the combined (2011-2012) sampling dataset represents an individual plot and 
contains information on the occurrence of our invasive targets. We focused on two species in particular, 
i.e., Brassica and Schismus, because detections of the other species were too sparse to permit robust 
predictive modeling (see Table 3).  
 
Table 3: Number and percentage of detections of five focal species by plot and subplot sampled in the 
Sonoran Desert during our 2011-2012 field season. 
 
 2011 Detections 2012 Detections 
Species Plot (n=238) Subplot (n=1171) Plot (n=506) Subplot (n=2530) 
Schismus 133 (56%) 505 (43%) 473 (93%) 2020 (80%) 
Brassica 113 (47%) 329 (28%) 260 (51%) 748 (30%) 
Bromus 15 (6%) 54 (5%) 11 (2%) 13 (0.5%) 
Eruca 14 (6%) 32 (3%) 26 (5%) 77 (3%) 
Pennisetum 21 (9%) 46 (4%) 3 (0.6%) 3 (0.1%) 
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Classification models 
Records in the combined sampling dataset also contain a large suite of environmental and remotely 
sensed attributes (hereafter ‘features’). These features served as predictors in the models described 
below, and were generated by ‘reducing’ time-series of imagery to summary statistics, for every 
occurrence record. Reductions were performed on image collections available in Google Earth Engine 
(EE; http://earthengine.google.org/). See Hansen et al. (2013) for an example of using EE for processing. 
The complete set of features selected as predictors is shown in Table 4. 
 
Table 4: Features used to predict the occurrence and cover of the invasive targets. The total number of 
features in each category is indicated parenthetically in the group column.  
 
Group Dataset Bands/variables Filters* Reduction(s)** Citation/source 

Meteorological 
variables (9 
features) 

The Gridded 
Surface 
Meteorological 
(GRIDMET) dataset 
(daily) 

Precipitation, 
minimum and 
maximum 
temperature, and 
potential 
evapotranspiration 

1983-2012 (the 30-
year window leading 
up to and through the 
sampling effort) AND 
the 1st day of the 
week AND winter 
season 

Mean and variance 
(Abatzoglou 2013)  
https://earthengine.google.org
/#detail/IDAHO_EPSCOR%2FG
RIDMET 

The Palmer 
Drought Severity 
Index (PDSI) 
dataset 

Not applicable 1983-2012 AND winter 
season Anomaly*** 

(Abatzoglou et al. 2014)  
https://earthengine.google.org
/#detail/IDAHO_EPSCOR%2FP
DSI 

Geomorphological 
variables (10 
features) 

The MODerate-
resolution Imaging 
Spectroradiometer 
(MODIS) Albedo 
product 

Visible, near-
infrared, and 
shortwave white-
sky albedo 

Winter season Mean and variance 
(USGS LP DAAC)  
https://earthengine.google.org
/#detail/MODIS%2FMCD43B3 

Shuttle Radar 
Topography 
Mission (SRTM, see 
Farr et al. 2007) 
digital elevation 
data 

Elevation, slope, 
aspect (i.e., 
northness), and 
multi-scale TPI 
(sensu Theobald et 
al. In review) 

Not applicable Not applicable 
https://earthengine.google.org
/#detail/USGS%2FSRTMGL1_0
03 

Vegetation indices 
and surface 
reflectance data 
(96 features) 

MODIS Vegetation 
Indices products 
(16-day composite) 

NDVI and EVI. Blue, 
red, near-infrared, 
and shortwave 
reflectances.  

Sampling year (for 
anomalies 
calculations) 

- Mean and variance 
- Anomalies**** 

(USGS LP DAAC)  
https://earthengine.google.org
/#detail/MODIS%2FMOD13A1 

- The month 
preceeding data 
collection 
- The two months 
bounding the data 
collection event 
(before and after) 
- The 8-month window 
leading up to the data 
collection event 

- Max (for the first 
two filters) 
- Mean, min, max, 
and variance, as well 
as slope and 
intercept (for the 
final filter) 

 
* The winter season was defined as December to March. Summer was defined as July to mid-September.  
** All temporal reductions of image collections were followed with spatial reductions using the footprint of each plot. 
*** The 30-year mean PDSI subtracted from PDSI at the time of sampling. 
**** The mean and variance of selected bands in the year in which sampling occurred, divided by the mean for the entire series 
(15 years).  
 
 

We completed both Random Forest (Breiman 2001) and Support Vector Machine (SVM; Cortes 
& Vapnik 1995) classifiers. Models were tuned and trained using the caret package in R (Kuhn 2008). 



31 
 

Each model was tuned to a training partition (70%) of the full dataset using repeated 10-fold cross-
validation. Final models were applied to the testing data partition (30%) to generate more accurate 
estimates of out-of-sample error rates (see model evaluation). The model selected as the best model 
(using the H measure; Hand 2009) in the training stage of model development was then re-fit against 
the full dataset in EE using the hyperparameter values identified during the tuning process. This EE 
classifier was then used to generate spatially-explicit predictions of the occurrence of each of the 
invasive targets. The element of ‘landscape risk’ was embedded by making the same prediction in both a 
highly productive, wet as well as an unproductive, dry growing season.  

Model Evaluation 
The predicted occurrence probabilities can be reclassified to one of two classes (present/absent) 
depending on whether the predicted probability (for a given plot or pixel) is greater or lower than a 
specified threshold (described in more detail below). How false positives are balanced against false 
negatives depends on the cost/consequence of either error type. The ROC curve visualizes and 
quantifies the impact of the choice of threshold on the false-positive / false-negative rate tradeoff. In 
the context of plant invasions, false negatives are more consequential than false positives (Smith et al. 
1999). Thus, we created a cost function for each occurrence model by assuming a cost of 1 for false-
positive cases and a cost of 2 for false-negative cases. 
           An optimal ROC curve would go through the point (FPR, TPR) = (0, 1). In other words, model 
predictions would contain no false positives and all true positives. In real-world circumstances, classifiers 
are rarely this perfect and, as such, the closer to the optimal point the better. The ROC is summarized 
into a single value by calculating the area of the convex shape below the ROC curve (the area under the 
curve; AUC). The closer ROC gets to the optimal point (perfect prediction) the closer AUC gets to 1.  

The AUC of a classifier is equivalent to the probability that the classifier will rank a randomly 
chosen positive instance higher than a randomly chose negative instance (Fawcett 2006). 
Conventionally, AUC values of 0.5 indicate that the modeled occurrence values are no better than 
randomly selected values. AUC scores of 0.6 - 0.7 indicate a poor fit of the model to the data, whereas 
values of 0.7 - 0.8, 0.8 - 0.9, and 0.9 - 1.0 indicate a fair, good, and excellent fit, respectively. We used 
these breaks as a rough guide to the performance of the occurrence models we obtained from the data.  

A spatially weighted ensemble and MODIS phenology-based approach for mapping Sonoran Desert 
invasive annual plants 
We used Random Forests (Breiman 2001) to predict the likelihood of presence of Brassica and Schismus 
based on static and dynamic data. Predictions were initially derived with field data collected in 2011 and 
subsequently with data collected in 2012 where 2011 data served as an independent validation dataset. 
Brassica and Schismus were the only species used for these predictions because target detection rates 
for Bromus, Eruca, and Pennisetum were insufficient for modeling via this approach. 
 To account for non-stationarity in the influence of predictor variables on likelihood of Brassica 
and Schismus detection across the study area, we developed a new method, Spatially Weighted 
Ensemble (SWE) modeling (Olsson et al. In prep.). SWE is an ensemble model aggregation technique 
whereby contributing models are combined using spatially varying weights. In arid ecosystems, leaf 
phenology is highly dependent on precipitation patterns, yet precipitation in arid lands is highly variable, 
resulting in high heterogeneity of green-up regionally (Figure 12). This is an extremely important 
consideration because although the invasion-phenology hypothesis suggests that local differences in 
phenology may be indicative of invasion, the regional asynchrony in precipitation and resulting 
heterogeneity in green-up may mask those differences (Wolkovich & Cleland 2010). 
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We introduce SWE as a method to overcome this challenge and therefore a potentially 
important technique for use in other arid systems, as well. To implement the SWE, we developed a 
number of “local” models that have been trained using a spatial subset of the field data and, by logical 
extension, are “tuned” to the local discriminating conditions of that spatial subset. The spatial layout of 
plots within the spatial subset is used to derive an interpolated surface for each local model, described 
as an area of influence. The local models are then combined using linear combination but with spatially 
varying weights. The weights of each local model are normalized at each cell such that the sum of 
weights is equal to one, and these weights are used to combine model values in a linear weighted sum. 
We tested a variety of spatial interpolations and weighting schemes, including a hybrid between spatial 
weights and performance-based weights. Performance-based weighting integrates multiple contributing 
models into an ensemble wherein the weights are augmented by each model’s performance on a 
validation dataset, thus using intrinsic validation to guide weighting. 

 
Figure 12: Regional and SWE models of Schismus (A, C) and Brassica (B, D) likelihood as well as the 
difference between SWE and Regional predictions (E, F). The difference images highlight areas where 
the models agree (pale colors) and disagree (warm colors indicate Regional model predicts higher than 
SWE; cool colors indicate otherwise). 
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MODIS scenes were pre-processed to remove poor quality data (such as cloud-covered images), 
and smoothing splines were used to interpolate missing data on a cell-by-cell basis (Scharlemann et al. 
2008). We then used NDVI to derive phenology as per Sesnie et al. (2012). For the Landsat TM 30 m 
models, we obtained all cloud-free Level 1B Landsat TM scenes in existence for path 37, row 37 and path 
38, row 37 between January 1, 2000, and June 13, 2011. We calculated NDVI from the NIR and red 
bands, following Tucker (1978). Beginning in November, 2011, Landsat TM imagery was taken offline. 
For this reason, we did not acquire new Landsat TM imagery for models based on field data collected in 
2012. We derived seasonal estimates of leaf phenology based on NDVI by determining the timing and 
amplitude of maximum and minimum NDVI for the summer season (June through November) and 
winter/spring seasons (December to May). Static predictor variables incorporated into the model were 
derived for topography from 30 m NED DEMs (Hutchinson 1982). Finally, a reference satellite image 
covering the entire area was derived from Landsat TM imagery from six Landsat TM scenes from WRS2 
path/rows 36/37, 36/38, 37/37, 37/38, 38/37, 38/38 for August of 2009. All DEM- and TM-based 
variables were resampled to 50 m, aggregated to 250 m, and snapped to a MODIS scene for the MODIS 
model and retained at 30 m for the Landsat TM models. For the Landsat TM analysis, we derived models 
for Schismus and Brassica for Landsat p38/r37 and p37/r37 separately using Random Forests. We 
derived models for Schismus and Brassica for the full study area using Random Forests and compared 
this with our SWE modeling approach. Analysis was performed in R 2.15. 

Go/No-Go decision point #1: 
Within Task 6, and to address the first of two Go/No-Go decision points identified by SERDP program 
staff, we performed an interim assessment of our methods in order to demonstrate the ability to use 
remote sensing (multi-temporal satellite data) to differentiate non-native from native species. The 
specific Action Item was to: Provide a white paper that includes criteria for success for demonstrating the 
ability to use remote sensing (multi-temporal satellite data) to differentiate non-native from native 
species. Include indicating how you will account for inter-annual variation in plant phenology when 
applying these technologies to detect invasive species. Our white paper was submitted 9/6/2011. 

Task 11: Acquire new Hyperion-hyperspectral data (phase 1)7 
 
On June 15, 2009, the USGS Earth Resources Observation and Science (EROS) center began accepting 
EO-1 Data Acquisition Requests (DARs) at no cost (http://eo1.usgs.gov/). We submitted monthly Data 
Acquisition Requests (DARs) for two sites within the study area: one within YPG and another within 
BMGR-W in four one-month acquisition windows between January 1 and April 30, 2012 (Figure 13).  
These four months were selected with the objective of capturing the phenology of each site during the 
2012 winter growing season. Based on MODIS time series NDVI, our objective would easily have been 
met given these criteria and provided hyperspectral imagery spanning the peak spring growing season. 
MODIS NDVI time series for both locations indicated that peak NDVI most frequently occurred between 
February 1 and April 30, although the maximum NDVI of both sites occurred in late January 2005 (but 
remained high through February) (Figure 14). We had anticipated capturing early green-up, peak 
greenness, and senescence by acquiring Hyperion hyperspectral scenes in locations where large patches 
of both Schismus and Brassica were sampled in 2011. Clusters of plots in those locations had been 
identified based on 2011 Landsat and MODIS models and were located in proximity to the DAR centers. 
Complete scene extents of DARs would be unknown, although we hoped the scene center of each DAR 
would be close to our request.  
 

                                                 
7 Phase 2 was not pursued. 
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Figure 13: Location of Data Acquisition Request (DAR) positions (A) and yearly winter MODIS NDVI time 
series from 2000 to 2011 for DAR positions (B). Red and blue triangles signify Mohawk Dunes (in BMGR) 
and Quartzsite (north of YPG) locations in both graphs with respect to plots visited in 2012. Maximum 
NDVI for each year is indicated in the graph (B) as a single triangle symbol for each site. 2012 NDVI is 
indicated by solid red and blue lines, respectively. Notably, maximum NDVI for both locations were 
below 0.2 throughout early 2012 and declined from January 1 through June 1. 
 

Unfortunately, only one of the ten DARs for Hyperion imagery was fulfilled (Figure 15). A DAR 
may not be fulfilled if images for higher priority targets are being acquired. In our case, two targets with 
higher priority may have usurped our request: the CEOS (Committee on Earth Observation Satellites) 
calibration sites at Frenchman Flat and Ivanpah Playa, and the requests for acquisitions coordinated 
with the 2012 GOES-R (Geostationary Operational Environmental Satellite R-Series) 
calibration/validation campaign that included White Sands and the Sonoran Desert. 
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Figure 14: Difference in MODIS NDVI values from 2012 vs. 2011, using image dates from peak spring 
(March) production period. Warm colors (yellow, orange, red) indicate areas with NDVI that was lower 
in 2012 than for the same date range in 2011. 

 
Figure 15: Location and extent of Hyperion scene acquired on March 6, 2012, in relation to study area 
and plots visited in 2012. 
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Task 12: Non-native mapping (Hyperion-hyperspectral) (phase 1)8 
The one fulfilled DAR resulted in a single scene that covered a total of 21 of our plots and 105 subplots, 
all of which were visited in the field between February and April 2012. Within the boundaries of that 
one scene, 21 plots and 99 subplots contained Brassica and 25 plots and 111 subplots contained 
Schismus. Maximum Brassica cover within the scene was 30% at the subplot level and averaged 13.8% 
among all subplots containing Brassica. Maximum Schismus cover within the scene was 18% and 
averaged 6.1% among all subplots with some Schismus. Three other target invasive species, Pennisetum, 
Bromus, and Eruca, were not found at plots within the scene. The abundance of both Brassica and 
Schismus in the scene is best characterized as low (i.e., all below 25% cover), even where most 
abundant. 

 Hyperion is an experimental satellite sensor with known signal processing errors from excessive 
‘striping,’ bad reflectance detectors, and ‘bad’ bands that can degrade spectral data (Datt et al. 2003). 
Correcting Hyperion radiometric data typically involves removing bands with significant striping (Figure 
16). We acquired a Level 1B processed Hyperion scene, which lacks geometric information. Destriping 
requires the scene to be in its native, un-georectified state. We destriped the image by applying a linear 
correction to each image column based on a normalization of cross-track means of each band. We used 
a Landsat TM Level 1B image (Scene LT50380372011059PAC01, path 38, row 37, acquired February 28, 
2011) as a reference and geometrically corrected the Hyperion scene (33 ground control points, Mean 
RMSE 0.58, standard deviation 0.33) (Figure 16). We applied the FLAASH algorithm to convert the scene 
from exoatmospheric radiance to surface reflectance. One hundred and four bad bands contained no 
data and were eliminated (bands 1-7, 58-78, 80-82, 120-132, 165-182, 185-187, and 221-224).  
 

 
Figure 16: Example of original Hyperion band 9 (A) and de-striped Hyperion band 9 (B). 

 
We applied a MNF transformation to reduce the dimensionality of the hyperspectral data and 

order bands by decreasing variance (Green et al. 1988). We then applied an inverse transformation of 
the MNF using the remaining coherent bands and used this as the final Hyperion product for vegetation 
analysis. Each of these methods is commonly applied to hyperspectral data, which have narrowly 
defined spectral bands that are more highly attenuated by atmosphere.   

To map pixels within the scene containing the target species, we used MTMF to compute the 
similarity of each pixel to a reference spectrum representing the purest spectra of each target invasive 
plant, as determined from field samples (Boardman 1998). MTMF estimates the subpixel abundance of a 
reference material or cover based on pixels values from the MNF-transformed scene. For MTMF to be 
effective, a pure or semi-pure reference spectrum must be obtained. We selected the pixel within the 
scene containing the maximum cover of the target species. Ideally, this would be from areas sampled 

                                                 
8 Phase 2 was not pursued. 
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with close to 100% cover by each species. In the absence of pure targets, reference spectra can be 
obtained in the field or inferred from within the scene at field plot locations. Target spectra were 
obtained in the field using an ASD Fieldspec3 Spectrometer during February of 2012. Spectra included 
representative samples from both actively growing and desiccated specimens of our target species. 
Reconciling these spectra with atmospherically-corrected Hyperion was critical to our ability to use field 
spectra for scene-based target detection. However, the poor date match of Hyperion data precluded us 
from utilizing the field spectra, since the hyperspectral satellite image and ground reflectance spectra 
were collected over 30 days apart (Congalton & Green 1999). This mismatch was compounded by the 
fact that there is tremendous variability in the field-collected spectra for these species, due in part to 
our inability to locate large, dense patches of Schismus and Brassica. 

Reference spectra can also be inferred from within the scene using techniques from convex 
geometry. We used the sequential maximum angle convex cone (SMACC) method to derive Ems, or pure 
constituents of the scene (Gruninger et al. 2004). Ideally, our target species were distinct EMs but 
matching a SMACC-derived EM with our target species is not straightforward because the exact EMs 
selected by SMACC depends on the scene, the number of EMs specified, and other parameters. To 
identify the best possible EM, we derived 30 EMs using SMACC, then regressed the subplot cover with 
the SMACC estimates of each end member and selected the EM with the best model fit (i.e., the 
‘winner’). Using the winning EM from the linear model, we mapped Schismus and Brassica simply as the 
proportion of each pixel identified as the winning EM. Analysis was done in ENVI 4.7. 

After the development of the above methods, we evaluated our second of two Go/No-Go 
decision point, as suggested by SERDP program staff, namely to provide a white paper that includes 
criteria for success for demonstrating the ability to use remote sensing (Hyperion hyperspectral data) to 
differentiate nonnative from native species. Include indicating how you will account for inter-annual 
variation in plant phenology when applying these technologies to detect invasive species. Our methods 
(and results) were detailed in our Interim Progress Report, submitted September 9, 2012. 

Comparison of simulated HyspIRI with two multispectral sensors for invasive species mapping9 
We used an AVIRIS scene from 05 November 2003, available from the AVIRIS archives (scene 
IDf031105t01p00r05c_sc01) for our area of interest. The scene had a spatial resolution of 3.2 meters. 
We atmospherically corrected the sceneusing FLAASH (Matthew et al. 2003) and aggregated (pixel 
averaged) to 15m, 30m, and 60m spatial resolutions. Additionally, we acquired hand-digitized polygons 
of Pennisetum patch boundaries from 2002 based on Olsson and Morisette (2014). 

Simulated scenes 
We derived ASTER and Landsat TM scenes using spectral convolution of AVIRIS with spectral filters for 
ASTER and Landsat TM (filter vendor Green Shimada, 1997). HYSPIRI was unaltered from the source 
dataset because the HYSPIRI spectral filter response shapes are unknown. AVIRIS is similar in spectral 
characteristics to the proposed HYSPIRI VSWIR instrument. The two sensors both have 0.01 um 
bandwidths at 0.01 um increments from 0.40 um to 2.50 um, and each have a nominal SNR of 400:1 in 
the SWIR. Two HYSPIRI bands centered at 0.38 um and 0.39 um were missing from our simulated scenes 
because they are not acquired with AVIRIS. 

 

 

                                                 
9 The below methods have been peer-reviewed and published in Olsson, A. D., and J. T. Morisette. 2014. 
Comparison of simulated HyspIRI with two multispectral sensors for invasive species mapping. Photogrammetric 
Engineering and Remote Sensing 80:217-227. 
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Reference map of Pennisetum cover 
The AVIRIS scene was transformed with a MNF transformation, and we then applied mixed-tuned MF 
(Boardman 1998) to the corrected AVIRIS scene to map Pennisetum cover based on areas known to 
contain dense Pennisetum. Pennisetum patches had been mapped by Olsson et al. (2012a) using 0.3 m 
resolution aerial photography from 2002. A reference spectrum in the MNF-transformed image was 
derived using areas of dense Pennisetum, chosen based on high estimates of Pennisetum cover 
according to 2002 images. Eleven reference pixels were selected from the dense cores of the three 
largest patches as they appeared in historical imagery. Pixels judged to be most pure were selected to 
minimize contamination by substrate  

We used previously digitized patch polygons (‘reference polygons’) to create a binary 
classification of Pennisetum at the 3.2m (10.2 m2) pixel size. We used the mixed-turned MTMF filtering 
output as a predictor variable and the digitized polygon dataset as the dependent variable to construct a 
logistic regression model of Pennisetum. We then iteratively altered the threshold to establish a binary 
model that fit our expert knowledge. This threshold was the criterion for a binary classification of 
Pennisetum for all cells in the study area. Our approach reduced overprediction associated with north-
facing slopes and higher elevations, which are less suitable for Pennisetum because it is cold intolerant. 
These features support greater herbaceous plant cover than native Arizona Upland, giving them the 
potential to produce a signal that may confound identification of Pennisetum, which also supports 
greater herbaceous plant cover.  

Based on these methods, we considered the MTMF threshold-based binary classification the 
reference image for the rest of our analyses. The binary reference image was resampled to 15, 30, and 6 
0m pixel sizes using simple linear aggregation, resulting in pixel values between 0 and 1. These values 
represented the percentage of Pennisetum cover within each of 15, 30, or 60 m cells. 

Predicting Pennisetum abundance in all scenes 
We obtained the noise equivalent reflectance (NEδρ) for Landsat TM and ASTER and added random 
noise to AVIRIS-based reflectance images. NEδρ values for Landsat TM bands 1-5 and 7 were 0.16, 0.21, 
0.23, 0.22, 0.25, and 0.37%, respectively (Mika 1997). For ASTER, we used the stated NEδρ values from 
the ASTER Users Handbook: 0.05% for VNIR and 0.13% for SWIR (Abrams et al. 2002). For HyspIRI, we 
used the stated 0.02% NEδρ target for all bands (JPL 2009).  

We modeled Pennisetum at the 15, 30, and 60 m spatial resolution using Random Forests 
(Breiman 2001; Lawrence et al. 2006) with noise-added reflectance bands of each of the simulated 
images as the independent variables. Random Forests uses multiple classification and regression trees 
(CARTs; Breiman 2001) to perform ensemble classification. A different subset of predictor data is used to 
train each tree via bootstrapping, and each tree is developed using feature selection at each node. A 
random subset of predictor variables is selected at each split node in each tree, and an optimal split is 
selected from that subset (i.e., feature selection). Each split is associated with a node impurity (the Gini 
coefficient) based on data left out of the training data (i.e., out-of-bag data, which are typically one-third 
of the data). The importance of each variable is calculated as the mean decrease in the Gini coefficient 
associated with each variable over all trees in the ensemble. Gini can be summed over all nodes in the 
tree and over all trees in the forest to provide a measurement of variable importance.  

We used 1500 individual trees for each random forest ensemble model, and generated the 
models using version 4.6-2 of the “randomForest” package in R. We derived continuous models of 
Pennisetum cover for the three sensors at three different resolutions for each sensor. We iteratively 
removed the least important variable from a model containing the full set of input variables until we had 
removed all but one variable. We selected the model with the greatest overall model performance 
based on Cohen’s Kappa. From the final (reduced) model for each sensor and resolution, we assessed 
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variable importance to identify spectral features that HyspIRI might be able to better distinguish than 
ASTER or Landsat TM. 

Accuracy assessment 
We normalized the models based on a fixed user’s error in order to ensure compatibility between 
models; lower sensitivity values correspond to a greater number of producer’s errors and weaker 
predictive models. We also compared the performance of models on patches of similar size in order to 
explore management implications. However, spatial aggregation of pixels at 15, 30, and 60 m results in 
different pixel areas and indicates different levels of infestation. We use the term ‘effective patch size’ 
to define the cover (m2) of Pennisetum within a pixel, recognizing that resolution dictates interpretation 
such that multiple discrete patches may reside within a pixel and some patches may cross multiple pixel 
boundaries. 

User’s accuracy was calculated as a function of effective patch size for models from all three 
sensors using an incremental analysis for determining thresholds for Pennisetum presence while 
selecting model thresholds for presence that held user’s accuracy at 10%. We varied the minimum 
threshold of Pennisetum cover between 1% and 100% and, for each model and cover threshold, we 
maximized the model threshold such that the user’s accuracy of the lowest 5% was at most 10%. By 
holding user’s accuracy constant, we were able to compare the producer’s accuracy of different sensors 
both as a function of cover and as a function of effective patch size. Thus, this predicts the percentage of 
patches of different sizes that will be identified correctly when 90% of the predicted patches of the same 
size are, in fact, Pennisetum. This is similar to work by Mundt et al. (2006), but differs in two respects: 1) 
we used a continuous predictive model to avoid the confounding effects of variability in user’s accuracy, 
and 2) we performed accuracy assessment only on the minimum effective patch size. This approach 
enabled us to compare the ability of each model to detect patches of a given size while holding the 
user’s error rate constant. 

OBJECTIVE 2: Model invasion risk from non-native plants under current and projected climate 
conditions. 

Task 5: Compile AOGCMs 
We obtained data representing global current and projected future climate from WorldClim 
(http://www.worldclim.org) as interpolated climate surface layers of mean monthly temperature and 
precipitation at 2.5 arcminutes spatial resolution. Current climate data for the period of 1950-2000 are 
available through WordClim as interpolated layers of monthly averages of mean, minimum, and 
maximum monthly temperature and mean monthly precipitation (Hijmans et al. 2005). Future climate 
layers compiled through WorldClim are based on atmosphere ocean general circulation models 
(AOGCMs) from the 5th IPCC report and are downscaled  using the WorldClim 1.4 current climate data as 
a baseline (Hijmans et al. 2005). We chose climate model projections based on those that predicted 
regional temperature and precipitation with the lowest error (Rupp et al. 2013). We selected AOGCMs 
based on their performance as assessed by Rupp et al. (2013) and availability of relative concentration 
pathways (RCPs) in Worldclim. We included AOGCM projections based on RCP4.5 and RCP8.5.  RCP4.5 is 
the ‘medium-low’ pathway in the 5th report and is characterized by a stabilization of radiative forcing at 
4.2 W m-2 by 2100, which corresponds to atmospheric CO2 concentrations of 650 ppm (Stocker et al. 
2013). RCP8.5 is the ‘high’ pathway and projects a stabilization of radiative forcing at 8.3 W m-2 by 2100, 
which corresponds to atmospheric CO2 concentrations of 900 ppm (Stocker et al. 2013). Climate 
projections were based on five AOGCMs from the following modeling groups: National Center of 
Atmospheric Research (CCSM4), National Centre of Meteorological Research (CNRM-CM5), Met Office 
Hadley Center (HadGEM2-ES), Atmosphere and Ocean Research Institute, National Institute for 
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Environmental Studies, and Japan Agency for Marine-Earth Science and Technology (MIROC5), and 
Norwegian Climate Center (NorESM1-M). 

Task 7: Construct BEMs  
Many techniques for bioclimatic envelope modeling (BEM) have been developed. BEMs are used to 
understand the relationship between the geographic location where species occur and the climatic 
conditions at those locations (Franklin 2009). A model of suitable climate can then be projected back 
into geographic space to identify the spatial extents of potential for invasive plant establishment or 
abundance.  Suitable climate conditions can also be projected spatially based on the geographic 
distribution of future climate associated with climate change. For Bromus and Brassica, we used two 
BEM methods (MaxEnt and Bioclim) to predict the current and future geographic distributions of 
presence and high abundance. 
 For our analysis, we selected two target invasives for future spread prediction modeling, based 
on their abundance and impact in our study area. In order to predict future distributions of Brassica and 
Bromus, we first assembled all available data describing their current distributions. Next, we developed 
risk layers to predict their likely future distributions in southern Arizona. Using average minimum and 
maximum yearly temperatures and quarterly precipitation, we employed Mahalanobis Distance (Tsoar 
et al. 2007) and MaxEnt (Phillips & Dudík 2008) to model climatic suitability for abundance and for 
presence in the study area (Hijmans et al. 2005). Finally, we projected climatic suitability under climate 
change scenarios for both invasive species using climate conditions predicted by seven climate models 
for mid- and late century (Ramirez & Jarvis 2010). 
 
Occurrence data 
Current distribution data inputs were acquired from regional management databases, including the 
SWEMP (http://www.invasiveweeds.com/mapping), the California Invasive Plant Council 
(http://www.cal-ipc.org/), and the NPS, as well as roadside survey data collected by our team in March 
2011 and 2012. Out of that dataset, we identified point locations with known high abundance based on 
high recorded biomass or cover. This resulted in an abundance dataset and a presence dataset. 
Presence points are used to predict site suitability for establishment based on environmental 
characteristics, while abundance data enable prediction of risk of future abundance and associated fire 
risk.  
 Presence data for Bromus and Brassica were compiled from regional datasets (CalFlora 
(http://www.calflora.org/) and Cal-IPC (http://www.cal-ipc.org/)), surveys by managers with the Bureau 
of Land Management (BLM) and the Mojave Desert Network Parks, records from local and regional 
biologists, and herbaria, and supplemented with two field surveys (in 2011-2012) focused on roadsides 
only in southern Nevada, southern California, and Arizona. For both species, some abundance data were 
available from land managers and herbarium records as percent cover values and from field surveys as 
qualitative descriptions of relative abundance at each site. We transformed these data into two groups 
for each species: presence and high abundance. We classified locations as high abundance if the species 
had at least 10% cover, was described qualitatively as having continuous ground cover, or if the target 
species was observed in abundance beyond the road corridor. We included all available presence data, 
including points with high abundance, in the presence datasets. Records for both species were restricted 
to the southwestern USA (i.e., the region from which Bromus and Brassica are problematic invaders).  
Therefore, we limited the extents of our study regions using a convex hull around the presence locations 
of each species. Absence data comparable in extent to the presence/high abundance data were not 
available for either species. To remove duplicate entries and reduce sampling bias, we resampled each 
of the four datasets to include only one point per 2.5 arcminute climate grid cell. If more than one point 
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within a grid cell had abundance data, the maximum abundance value was retained. Maps of the 
resulting distribution data are presented in Figure 17. 
 

 
Figure 17: Spatial locations of data collection for each species.  We classified locations as high abundance 
if the species was recorded as having least 10% cover, was described as having continuous ground cover, 
or was observed in abundance beyond the road corridor. Points are shown as low abundance if they do 
not meet these criteria but have some description of abundance associated with them. Points lacking a 
description of abundance level are considered unknown. At the 2.5 arcminute resolution, we compiled 
110 high abundance occurrences for B. rubens and 218 for B. tournefortii.  243 points were classified as 
low abundance for B. rubens and 565 for B. tournefortii. Unknown abundance was found for 2950 B. 
rubens points and 1072 B. tournefortii points. Dashed line reflects a convex hull modeled using the most 
peripheral presence locations of each species. 

Analytical methods 
First, we used MaxEnt (Version 3.3.3k), an implementation of maximum entropy modeling (Phillips et al. 
2006), to model climatic suitability for the two coverage groups: presence and high abundance. MaxEnt 
relies on presence-only data, but generates pseudo-absences drawn from the study area to construct 
probabilistic relationships between climate and species distribution. Therefore, MaxEnt is sensitive to 
the extent of the area from which pseudo-absences are drawn (VanDerWal et al. 2009).  We used a 
mask in MaxEnt to select pseudo-absence points only within our study area, defined as a convex hull 
around each species’ occurrences. In order to account for uneven sampling of occurrence points 
(Kramer-Schadt et al. 2013), we included a bias file for each of the species based on presence of 
National Parks and distance to roads. We transformed the continuous model into a binary 
suitable/unsuitable map based on a threshold value that encompassed 95% of the location points.   
Second, we created Bioclim models of climatic suitability for Bromus and Brassica.  Bioclim identifies 
thresholds for each climatic predictor that encompass the distribution data (Busby 1991; Pearson and 
Dawson 2003).  We used ArcGIS 10.1 to extract the values of the four climate variables to all of the 
known locations, and then calculated climatic limits that encompassed 95% of the distribution dataset.  
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This threshold was created by excluding the climate values associated with the upper and lower 2.5% of 
presence or high abundance points. We calculated Bioclim climatic suitability as areas identified as 
suitable by all four climate layers. The MaxEnt and Bioclim results were combined to identify regions 
that were climatically suitable in either model. 
 We evaluated MaxEnt model performance based on the AUC values, which are widely applied to 
determine agreement between predicted species distributions and occurrence records (Fielding and Bell 
1997; Pearson et al. 2006; Thuiller 2003). AUC values are based on the ROC, which plots the rate of true 
positive predictions (sensitivity) against false positive predictions (specificity) with values ranging from 
0.5 (no better than random) to 1 (perfect model prediction).  

Task 8: BEM uncertainty analysis 
After establishing the climate conditions suitable for Bromus and Brassica based on current climate, we 
projected those conditions onto future climate models using the same thresholds used to describe 
current climatic suitability. We repeated this process for the five AOGCM projections, using an ensemble 
approach to assess model uncertainty. We created ensemble models of future presence and high 
abundance of Bromus and Brassica by summing all of the binary climatic suitability maps (i.e., those 
created by MaxEnt and Bioclim for each AOGCM) to create models ranging from zero (unsuitable in all 
models) to ten (suitable in all models). Combining models of suitability made with multiple BEMs and 
AOGCMs reduces the effect of any single model or scenario, and degree of model overlap provides a 
measure of confidence associated with model agreement (Araújo and New 2007). Still, uncertainty 
associated with the climate models used in our analyses likely contributed to uncertainty in our 
modeling results (Knutti et al. 2010). Although our choice and use of multiple climate models attempted 
to partially remedy this issue, we were unable to precisely quantify all sources of uncertainty. We 
created separate ensemble models for the two relative concentration pathways (RCP4.5 and RCP8.5).  
 To identify climatic suitability for invasion by Bromus and Brassica in the future, we created 
maps of range shift that show areas of future expansion, maintenance, and contraction.  We simplified 
this analysis by considering any area projected to have suitable climate conditions currently by either 
MaxEnt or Bioclim as suitable. We created two sets of range shift maps by applying a low and a high 
threshold for identifying suitability. The low threshold included all areas projected to be suitable by at 
least one model in the ensemble. The high threshold included all areas projected to be suitable by at 
least six of ten possible models. We compared current and future suitability to measure the land area of 
projected contraction, maintenance and expansion of invasion risk by 2050 within the study region 
defined for each species.   

OBJECTIVE 3: Model the impacts of recent and on-going land use disturbances on non-native plant 
invasion. 

Task 9: Land use models of disturbance and risk 
To model the effect of land use relative to other site characteristics on Brassica establishment (an 
extension of methods used by Bradley & Mustard (2005)), we first created a map of current Brassica 
presence in southwestern Arizona. This map was constructed using a time series of Landsat data for 
time periods when the invasive plant showed unique phenology and/or abundant growth across the 
landscape and could therefore be identified remotely. The resulting map was validated using the field 
survey data we gathered in 2010-2012 to compare predicted presence/absence of Brassica to on-the-
ground presence/absence. We used the validated, landscape-scale presence/absence map to test the 
effect of proximity to disturbance features, including roads, highways, and railroads, as well as physical 
geographic features, including topography and surface geology, on establishment of Brassica (after 
Bradley & Mustard 2006). One potentially significant source of disturbance could not be included in this 
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mode: the US Border Patrol employs road dragging as a method of detecting human foot traffic through 
border regions (i.e., Border Patrol teams drag tires over dirt roads to erase previous tracks in order to 
detect new tracks laid on the smoothed road). This practice disturbs roadsides, theoretically releasing 
resources and likely facilitating invasion. However, we did not have access to existing data on locations 
and quantity of road dragging, and for security reasons we were unable to sample near the US-Mexico 
border where road dragging is common. 

OBJECTIVE 410: Model the effects of increased fuel loads caused by non-native plant invasion on 
regional fire risk. 

Task 10: Fire modeling outputs 
Modeling and mapping large fire probability 
For two different large fire probability scenarios (see below), we used a mixed effects logistic regression 
model to estimate the relative probability of a large fire given a historical ignition event and conditioned 
on multiple environmental covariates (fixed effects). We characterized all fires that burned during the 
study period as either ‘large’ (i.e. ≥ 20 ha) or ‘small’ (i.e. < 20 ha) fires. Twenty hectares represents a 
low-end estimate of large fire size in desert fuels and is a threshold that characteristically identifies 
years when the annual fuel load is sufficient for fire spread (W. Reaves, pers. comm.). For the period 
1989-2010, we used fire occurrence data from two national level datasets (Finney et al. 2011, Short 
2013 and Fire Program Analysis, www.fpa.nifc.gov). Using a GIS, a random sample of fires that burned < 
20 ha was eliminated from the dataset so as to arrive at a more parsimonious 4:1 ratio of small to large 
fires (Brillinger et al. 2003).  

Approximately two thirds of the desert annuals in our Sonoran study region are winter growing 
and it is known that they contribute significantly to fuel loads following winters of above-normal 
precipitation. However, the exact effect of this precipitation on the timing and amount of growth is 
unpredictable, and may show irregular lagged effects with delayed germination. To account for inter-
annual variability in the response of large fires, we included in our models a random effect of moisture 
anomaly in the three winter growing seasons immediately prior to a given fire year. This approach 
allowed us to more accurately predict the probability of a large fire between 1989 and 2010, given the 
fixed effect parameters of interest.  

We accounted for the direct effect of fine fuel loads on large fire probability using a time-series 
analysis and seasonal NDVI summaries. As a spatially and temporally ‘dynamic’ variable, it can be used 
to estimate fire risk over large, contiguous extents (Maselli et al. 2003). Yearly maximum NDVI in a given 
area can be thought of as a proxy for the annual build-up of fuel (Box et al. 1989). Our exploration of 
NDVI values preceding large fires indicated a strong relationship between yearly NDVI values and large 
fire occurrence (Figure 18). To estimate yearly maximum NDVI values for 1988–2010 – the period 
coinciding with our fire occurrence dataset – we obtained Landsat Thematic Mapper (TM) scenes 
covering our study area (n = 1114, temporal resolution = 16 days) from the US Geological Survey (USGS) 
Global Visualisation Viewer (http://glovis.usgs.gov, accessed November 2012). Our model included 
variables of the year-of-fire maximum NDVI value as well as the maximum NDVI value of the year before 
the fire. 

                                                 
10 For Objective 4, methods have been peer-reviewed and published in Gray, M. E., B. G. Dickson, and L. J. 
Zachmann. 2014. Modelling and mapping dynamic variability in large fire probability in the lower Sonoran Desert 
of south-western Arizona. International Journal of Wildland Fire 23:1108-1118 
– AND – 
Gray, M. E., and B. G. Dickson. 2015. A new model of landscape-scale fire connectivity applied to resource and fire 
management in the Sonoran Desert, USA. Ecological Applications 25:1099-1113. 
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Figure 18: Values of NDVI within the burn perimeter of two large fires that burned in the study area: the 
King Valley Fire (A) burned in October 2005 and the Goldwater Fire (B) burned in June 2005. 
 

In addition to the dynamic NDVI variable described above, we derived an NDVI-based variable to 
represent the horizontal spatial structure of perennial vegetation. Similarly, previous research in the 
Mediterranean region of Spain successfully used Landsat TM to characterize the horizontal 
heterogeneity of vegetation by taking the standard deviation of Landsat bands in a local window (Vega-
García & Chuvieco 2006). Therefore, we approached our work in the context of far-reaching, uniform 
shrublands and sparsely vegetated areas in the Sonoran Desert, where large interspaces have been 
observed to amass continuous fine fuels after heavy precipitation. Our variable for perennial vegetation 
heterogeneity was the standard deviation of maximum NDVI in 1989 – a dry year when NDVI was most 
likely dominated by perennial growth. Our modelling approach also accounted for multiple terrain 
variables that directly influence fire spread and indirectly influence vegetation growth and flammability 
(Syphard et al. 2008). Using a DEM obtained from the USGS (http://ned.usgs.gov/, accessed March 
2011), we derived estimates of elevation, aspect (in degrees), and terrain roughness (standard deviation 
of slope; Preisler et al. 2011) within the GIS. We used the cosine transformation of aspect to provide an 
index that ranged between -1 (180°, south-facing slopes) and 1 (0 or 360°, north-facing slopes). 
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To account for human accessibility that might differentiate where fires are more or less likely to 
become large, we used the GIS and 2011 US Census Bureau TIGER line data 
(http://www.census.gov/geo/maps-data/data/tiger.html, accessed November 2011) to estimate a 
simple road density (km km-2) variable that could serve as a proxy for human accessibility and help to 
differentiate where fires were more or less likely to become large. 

We used a circular moving window operation and focal statistics in a GIS (ArcGIS v10.1, 
Redlands, CA, USA) to summarize each of the fixed effects within a 20-ha neighborhood around each 
ignition point. Although this approach was designed to encompass the landscape factors that influence 
fire size within our large fire threshold, it may not adequately account for the full array of factors that 
influence fire growth beyond 20 ha. All landscape variables were derived as or converted to raster grids 
with a 30-m pixel resoluation. For all landscape variables except the maximum NDVI, we standardized 
and rescaled values to a mean of zero and unit variance at the full extent of our study area. We used the 
‘raster’ package (Hijmans & van Etten 2012) in R 2.15.1 (R Development Core Team 2011) to extract 
landscape variables from each ignition point before statistical analysis. We included the winter 
precipitation anomaly immediately preceding a fire event and one lag-season precipitation anomaly as 
crossed random effects (Bolker et al. 2009). Precipitation anomalies, based on 1981–2010 normals, were 
derived from 800-m gridded data as the percentage of normal precipitation from October through 
March (Western Regional Climate Center, http://wrcc.dri.edu/monitor/WWDT/archive.php, accessed 
November 2011). For parsimony, and to account for the variance associated with winter precipitation 
totals, we categorized each random effect into five quantiles. We extracted the year-of-fire and lag-year 
winter precipitation anomaly from each ignition point before statistical analysis. 

We used an information-theoretic approach and multi-model inference (Burnham & Anderson 
2002) to identify and contrast environmental variables within a ‘full’ model. Using Akaike’s Information 
Criterion (AIC), we computed AIC weights to rank and evaluate the weight of evidence in favor of a 
variable given all possible models (i.e., all possible variable combinations; Burnham & Anderson 2002). 
We summed the AIC weights across all models in which a given variable (j) occurred and considered a 
cumulative AIC weight (w+(j)) ≥ 0.50 to be strong evidence for a response (i.e., probability of a large fire) 
to that variable (Barbieri & Berger 2004). We used the difference in AIC values to evaluate the 
performance of the full model against a null (i.e., random) model, and considered a ∆AIC value > 4.0 as a 
good approximation of the data (Anderson 2007). We used maximum-likelihood to estimate model-
averaged regression coefficients and unconditional standard errors. We also computed the variance-
covariance matrix of our fixed-effects parameters using the empirical Huber–White ‘sandwich’ 
estimator, which relaxed the assumptions of independence between fire locations and known 
covariance structure. To evaluate model classification accuracy, we computed the area under the ROC 
curve (AUC; Hosmer et al. 2000). This AUC value provided a likelihood-based measure of discrimination 
between predicted presences and absences. We considered AUC values > 0.70 as indicative of 
acceptable discrimination (Hosmer et al. 2000). We used the Hosmer–Lemeshow statistic to evaluate 
goodness of fit (a = 0.05; Hosmer & Lemeshow 2000). We conducted all analyses within the Statistical 
analysis software (SAS) and R Statistical Programming environments (GLIMMIX procedure in SAS v9.2, 
SAS Institute, Cary, North Carolina, USA; and R Statistical Package v2.15.1). 

We used the model-averaged regression coefficients and GIS to implement the full model and 
produce probabilistic, spatially explicit maps for two analysis years (1996 and 2005) at a 30-m pixel 
resolution. We chose these years to illustrate dynamic large fire probability in a moderate fine fuel 
scenario (1996) and high fine fuel scenario (2005), and we refer to these as moderate and high large fire 
probability scenarios. For 1996, we reasoned that fuel loads were affected primarily by the wet winter of 
1994 and therefore only moderately abundant. Fine fuels were uncharacteristically abundant across the 
study area in 2005. 
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Models and maps of fire behavior and hazard 
The interagency Landfire Project (www.landfire.gov) and the spatially explicit fire simulation tool 
FlamMap v5 (Stratton 2004) provide ‘off-the-shelf’ raster data that we were able to use to establish a 
baseline of current fuel conditions and potential fire threat. From those baselines, we derived predictive 
models and maps of fire behavior, hazard (heat per unit area), and rate of spread (m/min) across the full 
study area. FlamMap computes these potential fire characteristics based on topographic and fuel model 
features across the landscape for constant weather and fuel moisture conditions. Prediction of fire 
behavior uses categorical metrics of relative canopy fire behavior, including surface fire, passive canopy 
fire (torching of individual plants), and active canopy fire (simultaneous torching of multiple plants in a 
stand) to forecast fire behavior at any given location on the landscape under the assumption that the 
entire landscape is burning under a specific set of weather conditions. Fire hazard (BTU/ft2), by contrast, 
is a measure of either the amount of fuel available to a burning fire or a measure of fire intensity at any 
given location (i.e., pixel) on the analysis landscape under a specific set of weather conditions. These fire 
model outputs offer a snapshot of relative potential fire threat over extensive areas by reflecting 
biomass and non-native plant contributions to the fuel bed on an interannual basis. They do not, 
however, take into account the high levels of vegetation heterogeneity that can be present in the 
Sonoran Desert region. 

To capture that heterogeneity, our custom-derived fuel and vegetation models draw on 
estimates of biomass collected in the field or predicted using the methods described above, coupled 
with freely available 30-m resolution data on existing biophysical and vegetation characteristics 
provided by Landfire (Rapid Refresh 2008). Landfire-supplied inputs to these models included elevation, 
slope, aspect, fuel model (Scott & Burgan 2005), and vegetation height, cover, and basal area (of trees).  
 We parameterized our landscape file for FlamMap simulations using 96th percentile drought 
weather and fuel moisture conditions measured at the Squaw Lake, CA, Remote Automatic Weather 
Station (RAWS) (27-year average; Elev: 91 m, 32.91N, 114.49W). Squaw Lake has the most extensive 
source of climate data from 1986-present and is representative of the lowest mean annual precipitation 
across the study area (73 mm). Using that low precipitation value enabled a complete, lower estimate of 
average fuel moisture conditions for fire behavior calculations. In the model, we assumed maximum 
sustained wind speeds of 20-40 kph and an azimuth of 220 degrees. Live fuel moistures in the models 
ranged between 2 and 50%. Dynamic wind grids were generated using the Wind Ninja module within 
FlamMap. We applied the Scott et al. (2001) canopy fire calculation method. 

Modeling and mapping fire connectivity 
In addition to modeling large fire probability and fire behavior, we modeled fire connectivity across the 
landscape using circuit theory models. The underlying networks in circuit theory models are analogous 
to electrical circuits and are mapped as a graph structure of interconnected nodes and resistors that 
conduct current (McRae et al. 2008) (Figure 19). A resistor’s value is given by the probability of 
movement between its incident nodes and is the inverse of its conductance, making the model a 
probabilistic analysis of flow (Carroll et al. 2012). Whole landscapes can be modeled as circuit networks 
(Rayfield et al. 2011). An ecological flow is modeled via a voltage input, or a procession of thousands of 
‘random walkers.’ The voltage begins at a source node and moves randomly through the network until it 
reaches a target node. The resulting current density at any intermediate node is an estimate of the 
likelihood of flow passing through that node, en route from source to target. 
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Figure 19: (A) In circuit theory models, a resistor’s value is given by the probability of movement 
between its incident nodes. Fire connectivity is modeled via a voltage input that begins at a source node 
and moves randomly through the network until it reaches a target node. (B) To model fire connectivity 
in the Sonoran Desert, the whole study extent was represented as a circuit network by representing 
landscape grid cells as nodes connected to adjacent nodes by resistors. The resulting current density at 
any node was an estimate of the net, directionless likelihood of fire. (C) An ‘omnidirectional’ approach 
was used to account for overall fire connectivity, by implementing a model with one whole edge of the 
study extent as source and the opposite edge as target.  
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Standard statistical models investigating large fire occurrence develop and analyze continuous 
maps of the conditional probability that an ignition event will become a large fire (e.g., Gray et al. 2014). 
The probabilities in these models reflect a calculated likelihood that an ignition will result in a fire of at 
least some predetermined size, but are not able to generate predictions regarding fire spread dynamics 
beyond the specific location and size threshold. These models therefore offer limited capacity to predict 
whether a given location on a landscape is going to burn (Thompson & Calkin 2011). Our models are 
designed to overcome these limitations. In a circuit-network representation, the probabilities influence 
the strength of resistors, reflecting the probability that individual ignitions will grow and spread to 
incident nodes. The connectivity model thus treats the conditional probability of large fire as one 
parameter in defining a landscape conductance to fire spread. That conductance layer also incorporates 
other spatial controls that act on fire spread in order to reflect the overall probability of fire spread 
between incident nodes. Since the relative influences of spatial controls on fire vary between landscapes 
(e.g., Rollins et al. 2002), defining conductance necessarily requires a local- to landscape-scale approach. 
Our connectivity model therefore treats the conductance layer as an interconnected network, and 
resulting estimates of fire likelihood account for landscape-specific spread dynamics. 

Estimating fire likelihood 
The previously described logistic regression model permitted a spatial estimate of annual large fire 
probability under high fire hazard conditions (i.e. high large fire probability scenario), built on estimates 
of the maximum NDVI from 2004 and 2005. We used a GIS to generate model inputs and map 
predictions using a 450-m (20 ha) grid cell size. This grain size corresponded with the large fire 
threshold, and was thus a good minimum, sufficient grain size to introduce into a circuit network model. 
Next, we introduced fire spread behavior into the model by including the interaction between wind 
direction and topography. The maximum effect of wind and topography on fire spread occurs when 
wind direction is directly aligned with aspect (Whelan 1995). Favorable fire weather brings dry hot winds 
that interact with topographic features and strongly influence burn patterns. We used the program 
WindNinja (v2.1.3, Missoula Fire Sciences Laboratory, Missoula, MT) to simulate the effect of terrain on 
wind flow across the study region. With this program, an initial domain-averaged wind speed and 
direction are specified, and the program computes the spatial variation in these parameters based on 
topography and dominant vegetation. To obtain the initial inputs, we generated long-term (1986-2009) 
monthly averaged wind roses from the Western Regional Climate Center (www.wrcc.dri.edu, accessed 
February 2012). For the most active fire months in our study region (May-July) and daily burning period, 
the dominant winds were south-southwest with observed 10-minute average speeds of 12.9 – 20.9 
km/h. Since peak winds within 10-minute averages significantly affect fire growth, we used a probable 
maximum 1-minute speed of 30 km/hr (Crosby & Chandler 2004). We ran simulations for both 180° 
(south) and 225° (southwest) wind directions and wind speeds of 30 km/hour. Using the GIS, we derived 
a 450-m resolution grid based on the spatially varying wind direction with respect to aspect. 

To employ circuit theory, fire likelihood was estimated using cumulative conductance values, an 
additive combination of conditional large fire probability and spatially varying winds. When incorporated 
into a conductance layer, these values created a network of interconnected resistors in the fire 
connectivity model to reflect the probability of or resistance to fire spread from incident ‘ignited’ nodes. 
To estimate fire connectivity, we used Circuitscape (v3.5.8), an open source software program that 
applies circuit theory to predict current flow across large landscapes (McRae & Shah 2009). We used an 
‘omnidirectional’ approach (Pelletier et al. 2014) to account for overall landscape conductance by 
implementing a model with one whole edge of the study extent assigned as source and the opposite 
edge as target. Each edge was one grid cell in width (i.e., 450 m). We repeated this method for each of 
four source-target pairings (north-south, south-north, east-west, west-east) and each of two 
conductance scenarios (180° and 225° winds), for a total of eight model runs. The map outputs resulted 
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in a current density for every grid cell, equivalent to the overall likelihood of fire passing through that 
cell. Using the GIS, we summed these grid-based model outputs to generate a scenario of overall fire 
likelihood. This approach differs from fire likelihood estimation methods based on distributed fires 
across a landscape with individual starting and stopping events (e.g., Finney et al. 2011, Ager et al. 
2012). These events are typically drawn from probability distributions of burn duration and fire-season 
weather, so that the results represent long-term, annualized burn probabilities. Our approach was 
meant to avoid these assumptions, which are rarely based on sufficient data, and to fully represent all 
possibilities of fire spread in a year with high fire hazard conditions (i.e., 2005). Note that our definition 
of large fire size (i.e., 20 ha) corresponded to the modeled resolution, making results conditional on 
large fire occurrence. 
 To validate the performance of the fire connectivity model, we used a method that relies on 
burned area data and makes no assumptions about areas that have not burned. We used 13 years 
(2000-2012) of MODIS multispectral satellite-based burned area data (500-m pixel resolution; 
http://modisfire.umd.edu/BA_getdata.html, accessed August 2013) to identify evaluation grid cells. We 
binned fire likelihood cells into ten quantiles, and calculated the proportion of evaluation cells within 
each bin. We also calculated the proportion of fire likelihood cells within each bin and considered this 
the proportion expected by chance. The ratio of observed to expected proportions within each bin 
indicates a frequency of fire occurrence relative to chance, and lower ranked fire likelihood bins should 
have a ratio less than one, whereas higher ranked fire likelihood bins should have a ratio increasingly 
greater than one (Hirzel et al. 2006). We plotted this ratio against the ranked bins and calculated a 
Spearman rank correlation coefficient (rs). High positive values of rs would result from an increasing 
curve and would indicate that the ratio increases as fire likelihood increases, as should occur if the 
model adequately predicts observed fire occurrence. We considered values of rs > 0.80 as indicative of 
exceptional support for the model. Boyce et al. (2002) presented a similar approach with presence-only 
validation data to assess the ability of resource selection functions to consistently predict habitat use 
within levels of suitability. 

Evaluating fire effects 
Taking into account the impact of repeated fire and major vegetation associations in the lower Sonoran 
Desert, we characterized fire effects based on the degree to which future fire exposure is expected to 
negatively impact native plant community recovery. This approach relied on the notion that higher 
productivity and diversity of native plants increases fire resiliency (Wisdom & Chambers 2009), and that 
repeated fire will differentially impact plant communities based on their fire resiliency (Brooks & 
Chambers 2011). Differences in plant productivity and diversity were broadly grouped into the two 
ecological subdivisions of our study area – the Lower Colorado River subdivision and the Arizona Upland 
subdivision. While these subdivisions were created solely in reference to the vegetation, they parallel 
other ecological gradients that influence fire resiliency, such as available precipitation (Comrie & Broyles 
2002). The Arizona Upland subdivision harbors higher plant productivity and richness and thus was 
assumed to display higher fire resiliency. We retrieved a shapefile of these subdivisions 
(www.azconservation.org/downloads; accessed August 2010), which was digitized from the original 
1980 map ‘Biotic Communities of the Southwest’ (Brown et al. 1980). We also used mapped fire 
perimeters from the Monitoring Trends in Burn Severity project (www.mtbs.gov, accessed November 
2011), which provides a consistent and continuous source of mapped fire perimeters > 405 ha, from 
1984 to 2011. We used these data to determine whether a specific location had burned within the 
perimeter of a large fire in the recent past. We merged these two datasets in the GIS and assigned the 
outputs to relative classes of fire effects based on the association with expected fire resiliency. We 
assumed that fire would have the least negative effect in unburned extents of the Arizona Upland 
subdivision, with more negative effects in unburned extents of the Lower Colorado River subdivision or 
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burned extents of the Arizona Upland subdivision, and the most negative effects in burned extents of 
the Lower Colorado River subdivision. Since the lower Sonoran Desert is not well adapted to fire and 
large fire anywhere is expected to have at least moderately negative effects, we assigned these outputs 
to moderate, high, and very high fire effect classes, respectively. 

OBJECTIVE 6: Integrate the above models in a spatial decision-support package that informs 
sustainable resource management and recovery of native habitats and species on DOD and adjacent 
lands. 

Task 14: Design and develop scenarios for decision support 
Stakeholders in the Sonoran Desert face increasing uncertainty in developing near- and longer-term 
natural resource management objectives due to the synergistic impacts of climate change, plant 
invasion, and fire risk. A key objective of this project was to generate meaningful data and analysis and 
to contribute these for decision support to our collaborators. These collaborators include managers, 
decision makers, and technical staff within the DOD, BLM, Tohono O’odham Nation, U.S. Forest Service, 
several national monuments, the USFWS, and the Arizona Game and Fish Department (AGFD). To 
leverage our results for the greatest benefit to these collaborators, we developed and utilized a spatial 
decision-support system (SDSS) (Sisk et al. 2006). The SDSS was a multi-step process in which we 
participated in a series of interactions (formal and informal) with decision-makers and land managers to 
clearly identify congruent collaborator needs and project deliverables; structure management need-
driven scenarios with existing and developing SERDP project data; present, review and refine scenarios; 
develop data and scenario delivery package with supporting documentation; and conduct an inter-
agency delivery workshop (Table 5). In combination, these methods enabled us to direct our support 
toward the greatest needs identified by our partners and to translate results in the most effective way 
possible, breaking down the pervasive barriers between researchers and end users. 

We engaged managers and decision makers through an introductory project meeting (March, 
2010) by facilitating ongoing discussions regarding permitting and site selection criteria on their lands, 
and by conducting a comprehensive Needs Assessment Survey (NAS). The NAS provided a mechanism 
for collaborators to identify their data and information needs. It also served as a means for gaining 
insight into the institutional cultures and decision processes typical of the different land management 
units encompassed by our study area, as well as into the inherent challenges of working with multiple 
agencies across jurisdictional boundaries. To develop and carry out the survey, we structured and 
posited multiple questions that were electronically delivered to individuals identified through a series of 
phone calls with our collaborators. Subsequent interactions with our collaborators helped to guide the 
development of data and other research products for this project. We synthesized the collaborator 
responses to the NAS in a summary report, which was delivered electronically to all collaborators that 
had received the survey. 

We developed scenarios based on the NAS synthesis and in-person or telephone 
communications with collaborators on DOD and adjacent lands to address priorities identified in those 
communications. Uncertainty exists within both the science and management community about the role 
of invasive species in promoting fires on DOD lands in the Sonoran Desert. Identification of critical needs 
has been driven by a desire to reduce that uncertainty and thus has tended to be focused on fire risk 
and herbaceous fine fuels. While invasive species distributions for their own sake are important to 
managers, it is important to note that our scenarios highlighted the two risks (invasion and fire) both 
jointly and independently and thus provided managers information in both contexts. 
 
 
 



51 
 

Table 5. Outreach and information exchange schedule for the project SDSS. 
 

Period Outreach task 

March 2010 Introductory meeting in Yuma with DOD installation, AGFD, and FWS ecologists; 
field work to pilot sampling methods 

May 2010 Began identification of and contacting of prospective collaborators (i.e., 
installation staff, land managers, decision makers, and other collaborators within 
project area) 

Dec 2010-Jan 2011 Distributed formal project NAS to multiple collaborators  

Jan-April 2011 Phone calls and in-person interactions with project collaborators to a) provide 
project status, b) establish permits, and c) participate jointly in safety, field 
training, and sampling site selection 

May 2011 Submitted Sonoran Desert Research Program (SDRP) NAS summary to DOD staff 
and other collaborators 

Jan-April 2012 Interfaced with collaborators to a) provide project status and  b) establish 
permits 

May 2012 Interfaced with DOD staff, project collaborators, and other project PIs at IPR 
meeting to a) provide project updates and b) expand discussions on specific 
information needs and data delivery methods 

 
March 2013 

 
Phone interviews a) report on project status, b) gauge interest in further 
information on the data products, c) identify times for in-office visits  

 
May 2013 

 
In-stakeholder office meetings where we met with 15 people from five 
jurisdictions to a) share preliminary data products b) engage and receive 
feedback from agency personnel on invasives, GIS and data capabilities, and fire. 
This effort expanded our outreach by 11 new people including managers, 
biologists, GIS and field staff 

 
Nov 2013 

 
Final workshop 

 

Task 15: Develop collaborative process and stakeholder workshops 
In addition to the formal NAS summary report, our outreach efforts (e.g., data transfer or acquisition, 
training, and professional presentations) included interactions with resource managers during field 
visits, permitting processes, the SERDP In-Progress Review (IPR) meeting in May, 2012, and other 
ongoing activities with core agency collaborators, including Steven Sesnie (now USFWS) and Steven 
Rosenstock (AGFD). Additionally, we conducted phone interviews with DOD and other adjacent land 
managers in order to: a) review and refine our understanding of their most pressing needs; b) provide a 
succinct description of our project status and deliverables and how our products can support their 
management needs; and c) identify date and setting for a stakeholder results-transfer workshop. 
Importantly, these interactions allowed us to further structure the SDSS process, ensure all data are 
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developed and distributed in usable format(s), and to develop scenarios of future climate and land use 
across the study area. 

During the IPR meeting, we shared our initial research findings and interacted with key 
collaborators (installation staff, land managers, decision makers, and other collaborators within project 
area) and further discussed their overarching land management challenges and issues, with a focus on 
those related to invasive species and fire. These discussions often targeted specific research needs and 
how those needs could be addressed within the context of the technical and data limitations facing 
installation ecologists and managers. Our goal was to gain insights into which research products would 
have the greatest utility, as well as the technical aspects of how these products might be applied. 
Interactions at this meeting also addressed a) installation experiences with and access to pertinent 
software and computing environments; b) intra-agency support for data used to inform decision making; 
and c) possible data delivery and tech transfer methods. We engaged in more specific conversations 
with DOD personnel to establish personal connections that could facilitate subsequent conversations 
about their technical and information needs and how we might best meet those needs. 

Task 16: Tool transfer, training, and presentations 
In May of 2013, we conducted in-person visits with managers of multiple jurisdictions (Tohono O’odham 
Nation, Organ Pipe National Park, BMGR/YPG, Gila Auxiliary AFB, and USFWS Refuges) to discuss our 
work, its results, and applicability to management priorities of regional stakeholders. These meetings 
helped us to further pinpoint the needs and questions of these partners relevant to this study.  
 In November of 2013, we led a full-day workshop at Gila Bend Air Force Auxiliary Field. 
Attendees represented eight entities. Our presentation outlined the methods used to derive our results, 
presented maps in a Data Atlas as visual outputs of our fire modeling and invasive species spread 
modeling, and discussed the implications of environmental factors and year-to-year variability for our 
modeling approaches and for fire risk and invasive plant distributions. The discussion following this 
presentation focused on transfer of this information for management purposes. 

Results and Discussion 

OBJECTIVE 1: Develop empirical remote sensing-based models of the distribution and biomass of non-
native invasive plants in the Sonoran Desert and surrounding ecoregions. 

Task 2: Field sampling efforts11 
We sampled 238 plots (1171 subplots) in 2011 and 506 plots (2530 subplots) in 2012 (Table 3). In 2011, 
59% of subplots yielded detection of at least one target species, whereas 84% of subplots in 2012 
yielded detection of at least one target species. Detection of Schismus nearly doubled from 2011 to 
2012, reaching 93% and 80% on plots and subplots, respectively. The proportion of plots and subplots 
where Brassica was detected was consistent across the years, perhaps because low rainfall in both years 
limited the occurrence of the species. In both sampling years, Eruca was detected in clustered 
populations in highly localized areas. 

Considering the design of our sampling effort (Task 1), which was informed by habitat suitability 
modeling, field-based detections corresponded very well to the stratified habitat suitability and NDVI 
models in both years, and across all target species (Figure 20; Wang et al. 2014). At least three out of 
five target non-native species were detected in 74% of subplots in 2011 and 93% in 2012, and these 
subplots fell within the 70th percentile of at least one of the habitat suitability models. Mean biomass 

                                                 
11 These results have been peer-reviewed and published in Wang, O., L. J. Zachmann, S. E. Sesnie, A. D. Olsson, 
and B. G. Dickson. 2014. An iterative and targeted sampling design informed by habitat suitability models for 
detecting focal plant species over extensive areas. PLoS ONE 9:e101196. 
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extrapolated for subplots in 2011 was 51.3 kg/ha with a maximum of 1,328 kg/ha. The mean biomass 
extrapolated to subplots in 2012 was 43.9 kg/ha with a maximum of 1,404 kg/ha. Thus, there were both 
a decline in biomass between the two years and heterogeneity across the sampling region. The sampling 
distribution of biomass in the two years was strikingly similar, but biomass sample values clustered more 
around the middle range of biomass values in 2012. Differences may have resulted from the 2011 
season following a productive spring in 2010, whereas two successive years of drought preceded the 
2012 field season. 

 
Figure 20: The percentage of subplots containing different amounts of biomass sampled in 2011 and 
2012. The number of subplots from which biomass was collected in the two years varied significantly, 
with 1171 subplots sampled in 2011 and 591 sampled in 2012. This decrease was met with an increase 
in efficiency in terms of the total number of plots sampled and in the relative biomass collected where 
biomass sampling did occur. 

Characteristics of habitat suitability models and model predictions 
Model 4 for the winter annuals and Model 5 for Pennisetum predicted highly suitable habitats that 
coincided with areas of previously identified high Pennisetum abundance. The environmental attributes 
of highly suitable habitats (i.e., 90th percentile) for Pennisetum reflected expected habitat conditions in 
elevation, slope, aspect, annual precipitation, and vegetation type. These models identified seasonal 
precipitation events for germination and growth of the five target species (appearing on the landscape 
as green-up), as well as road proximity as important to the dispersal and colonization of Pennisetum. In 
habitat suitability models, the most important variable was elevation for Brassica, Schismus, and Eruca, 
winter precipitation for Bromus, and summer precipitation for Pennisetum. For Brassica, Schismus, and 
Eruca, elevation accounted for 65%, 51%, and 38% of explained variance for Model 4, respectively. Slope 
was the second most important variable for Eruca, accounting for 31% of explained variance. Winter 
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precipitation was the second most important variable for Schismus, accounting for 21% of variance for 
Schismus and 34% for Bromus. For Pennisetum, summer precipitation in Model 5 accounted for 56% of 
explained variance.  

All 25 HSMs exhibited AUC values that were significantly higher (p < 0.05) than null models 
constructed with random sampling points. All AUC values exceeded 0.70 for training AUC (ranging from 
0.73–0.97) and test AUC (ranging from 0.71–0.93). For all HSMs, species presence/pseudo-absence was 
significantly correlated with predicted habitat suitability with notable variation among species (0.36–0.8 
for point biserial correlation (COR), p < 0.01 or < 0.0001). COR values were the highest for Eruca and 
Brassica and lowest for Bromus. 

Together, Model 4 for the winter annuals and Model 5 for Pennisetum indicated that 81% of the 
study area was within high predicted habitat suitability (i.e., 70th percentile) for at least one of the five 
species. For one, two, and three focal species, respectively, 38%, 29%, and 12% of the study area 
corresponded to the 70th percentile of suitable habitats. Areas with low to medium suitability were 
spaced out across the study region. In combination, the 25 HSMs predicted 39% of the study area to 
have low (i.e. 30th percentile) to very high habitat suitability for the five focal species with notable 
variation among species. Suitable habitats for Schismus, Brassica, and Bromus were common, whereas 
suitable habitats for Eruca and Pennisetum were more rare across the study area. Models identified 
59%, 64%, and 55% of the study area as exhibiting low to very high suitability for Brassica, Schismus, and 
Bromus, respectively. Models predicted very low suitability (i.e. below 30th percentile) for 42% and 58% 
of the study area for Eruca and Pennisetum, respectively. 

Sampled locations in 2011 across ranges of habitat suitability 
For 2011, model outputs successfully guided our field data collection efforts, and also identified subplots 
predicted to harbor very high habitat suitability for one focal species but low to medium suitability for 
other species. This targeted sampling was directed, for example, at the 28% and 62% of sampled 
locations that were within the 90th and 70th percentile, respectively, of Brassica habitat suitability, and 
were also within areas of lower suitability for at least one of the other four species. For Schismus, 16% 
and 39% of total locations that were within the 90th and 70th percentile suitability, respectively, fell 
within lower habitat suitability of at least one of the other four species. Fewer sampled locations were 
within areas of high habitat suitability for Bromus and Pennisetum. Our decision to sample in habitats 
including low to very high predicted suitability values was conservative, providing opportunities to 
detect unknown populations or unknown areas of species distribution.  

Correspondence between detections and habitat suitability models 
In 2011, at least one of our five focal species was detected in 184 (77%) plots and 686 (59%) subplots. 
Schismus was most frequently detected, in 56% of plots in 2011 and in 43% of subplots (Table 3). 
Brassica, by contrast, was detected in 47% of the plots and 28% of the subplots and exhibited 
considerable clustering. Brassica was locally more abundant than Schismus but less frequently detected. 
Bromus, Eruca, and Pennisetum were uncommon. Models suggested that sites where Bromus and 
Pennisetum were detected were likely at the edge of their suitable habitat. Eruca occurred in few 
clustered populations in highly localized areas.  

We observed remarkably high correspondence between models and field data: among the 686 
subplots with presence of at least one out of five focal species, 652 (95%) fell within the 70th percentile 
of at least one of these HSMs. Furthermore, 80% (206) of the 257 subplots where multiple (n ≥ 2) focal 
species had been detected fell within the 70th percentile of more than one of these HSMs. Schismus 
and/or Brassica was present in 70% of the sampled locations. Ninety percent of the plots and 87% of the 
subplots where Brassica occurred were within the 70th percentile of the Brassica HSM. Where Schismus 
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was present, only 54% of plots and 49% of subplots corresponded to the 70th percentile of the Schismus 
HSM, reflecting the greater environmental variability across the distribution of that species. 

Four of the five Bromus models showed high predicted detection rate (> 0.8) at high habitat 
suitability (> 0.8). All five Schismus models showed positive but less strong relationships, as predicted 
detection rates ranged from low to medium (0.2–0.6) across low to very high habitat suitability. 
Predicted detection rates were low (less or near 0.2) across the gradient of habitat suitability for Eruca 
and Pennisetum models, consistent with our field data that populations were regionally rare and locally 
abundant at only a few locations. All models of detection rates outperformed regression intercept 
models when predicted habitat suitability was included. The average ΔAIC was > 10 (i.e., our threshold 
of model goodness of fit) for all five models for each focal species (average ΔAIC = 12.8– 229.2). Brassica 
and Bromus models showed the strongest fit, whereas Eruca and Pennisetum models were the weakest.  

Both sample size and detection rates in 2012 increased with iterative efficiency adjustments by 
integration of additional HSM input data, stratification of HSMs and other vegetation indices, and more 
rigorous sampling location prioritization and targeting. Of those subplots where the focal species were 
detected in 2012, 93% fell within the 70th percentile of at least one of the HSMs for each species. 
Detections for Schismus and Brassica occurred within the 70th percentile of species HSMs at rates of 76–
78% of plots and subplots, respectively. 

The environmental characteristics of invasion 
The advantage to our decision to target a range of recruitment sites with our sampling, working across 
habitat suitability gradients for each species, was that we were able to obtain a more realistic estimate 
of the extent of invasion across the study area despite two relatively dry winters preceding sampling. 
Brassica is associated with extremely sandy soils and dunes, whereas Schismus was more generally 
distributed as a minor component of most plant communities represented in our study area. The other 
three target species were less well-represented in our field data. Since Eruca was recently introduced, it 
may eventually cover a much more extensive range than it currently inhabits (Rorabaugh 2010), and 
HSMs may be unable to estimate its true fundamental niche. By contrast, Bromus and Pennisetum 
appear better suited to Sonoran Desert uplands with higher winter and summer precipitation than are 
typical of the lower Colorado River subdivision (Brown 1994) so are likely to remain rare in the hottest 
desert areas with extremely low summer rainfall. During our preliminary sampling in 2010 at locations 
with great abundance of Pennisetum in south-central Arizona, where the mean annual precipitation is 
32.3 cm (Olsson et al. 2012b), we detected much higher presence (47%) and cover (11%) (Wang et al., 
unpublished data).  

Detection rates across ranges of habitat suitability 
By sampling across habitat suitability ranges in 2011, detection rates for Schismus at plot and subplot 
levels and Brassica at plot level outperformed those of another multi-species study that used simulated 
field detections and multiple field sampling methods (Maxwell et al. 2012). By revising the sampling to 
be more targeted in 2012, we boosted the sample size still further. Our model outputs identify many 
suitable locations that Brassica could colonize but has not yet reached, or was once abundant but has 
decreased due to low rainfall. Eruca appears to be dispersed along recently abandoned agricultural fields 
and washes, but models show that it also has the potential to occupy relatively undisturbed locations, 
such as sandy areas with surrounding rocky terrain. The detection rate for Schismus was less variable 
across the range of habitat suitability, perhaps because this species occupies a broad range of 
environmental conditions.  

Our sampling design yielded high detection for our focal species but was limited in some 
respects. As is often the case for HSMs, we constructed our models by leveraging available datasets. 
Those data might not fully represent the distribution of a given species in the study area. Small Schismus 
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plants are often hard to identify, and Eruca is still regionally relatively rare. We sampled reasonable 
distances away from roadsides and across large environmental gradients (i.e. ,habitat suitability ranges) 
to capture variation that opportunistic sampling would not have been able to accomplish, reducing non-
detection sampling bias.  

Additionally, our HSMs provided landscape- to regional-scale habitat suitability information to 
stratify potential occurrence locations and identify uninhabited areas that are suitable for colonization 
(Araújo & Peterson 2012). The models may not capture local- or fine-scale variation of colonized 
habitats. HSMs based on presence-only data cannot account for species absent from highly suitable 
habitats or present in less suitable habitats due to biotic, historical, or dispersal factors (Pulliam 2000; 
Holt 2003; Sillero 2011). For example, Eruca currently occupies a very low proportion of its predicted 
suitable habitats, but could expand its distribution during years of increased plant productivity, such as 
ENSO events. 

Extending our designed and targeted sampling framework 
Our sampling design allowed us to improve detections for sparse and patchy populations by stratifying 
locations using HSMs and other ancillary data important to focal species establishment. This approach 
could easily be applied in other systems and for other focal species. Our framework is particularly 
relevant to ecosystems where, as in the Sonoran Desert, varied rainfall patterns may facilitate periodic 
and large increases in non-native invasive plant production and fuel loads followed by dry periods of 
increased fire risk (i.e., much of the American West). Modeling results can guide the design of 
management protocols by explicitly linking model-informed sampling to management strategies (Jones 
et al. 2010). 

Several key strategies improved detections rates. First, location selection using strata predicted 
by HSMs should include a greater range of habitat suitability that covers more local habitat variation. 
Adding other stratified vegetation indices such as remote sensing-derived phenological metrics in 
vegetation greenness can enable sampling to be directed toward areas of greater focal species 
productivity and abundance. Second, implementing a stratified random and spatially confined approach 
using rigorous criteria can increase sample size. Third, plot prioritization for sampling can be based on 
vegetation indices from recent remotely-sensed imagery. These data reflect vegetation greenness by 
annual plants prior to field work and helps to avoid sampling in areas with low or no annual plant 
production. Finally, targeting specific soil substrate type can help elevate efficiency of sampling for focal 
species that show strong habitat preferences to particular substrate types. These substrate data can be 
derived from spectral mixture analysis of high-resolution field spectrometer data, and satellite image 
classification can guide sampling prioritization. 

Task 6: Non-native mapping (Landsat/MODIS/WV2) 
A comparison of Landsat TM and MODIS vegetation indices for estimating phenology12 
Reflectance of invariant targets should remain constant over time. However, reflectance variables 
emerge over time out of errors due to atmospheric and other noise. The atmospheric correction 
minimized this variance, resulting in clustering of pixels from three dates in corrected scenes. No 
additional corrections were applied to MODIS VIs that were pre-processed with the constrained view 
angle maximum value composite algorithm to reduce atmospheric and terrain effects. 
 In arid lands, increased plant production is particularly tightly coupled with periods of increased 
precipitation (Allen 1991). When winter–early spring precipitation is sufficient, annual plants initiate 
                                                 
12 These results have been peer-reviewed and published in Sesnie, S. E., B. G. Dickson, S. S. Rosenstock, and J. M. 
Rundall. 2012. A comparison of Landsat TM and MODIS vegetation indices for estimating forage phenology in 
desert bighorn sheep (Ovis canadensis nelsoni) habitat in the Sonoran Desert, USA. International Journal of Remote 
Sensing 33:276-286. 
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growth between October and November and mature between February and April. Increased 
precipitation facilitates increased growth. KNWR prior to and during the study period experienced 
increased monthly rainfall during late fall 2007 and early 2008, characteristic of winter frontal systems 
that can bring widespread rainfall to the Sonoran Desert (Hanson et al. 1999). Monthly average 
temperatures were relatively consistent, but precipitation in 2007 and 2008 was highly variable between 
the years. These conditions typified the high inter-annual variability of rainfall in this region. 
 The number of available cloud-free Landsat TM image dates was less than the number of MODIS 
16-day composited scenes (13 vs. 23). TM presented a less-complete record of plant phenology and 
productivity. Of the TM-derived VI values, EVI appeared less sensitive to areas of steep rocky terrain 
shadowed during image acquisition (Figure 21). Departure values greater than 100% of the annual 
average were considered green-up events or periods of increased plant productivity (Pennington & 
Collins 2007; Beck & Gessler 2008; Mildrexler et al. 2009; Van Leeuwen et al. 2010). Monthly DA below 
100% represents lower productivity periods where annual plants are in an early-germination stage or 
have undergone senescence. EVI departure values were, in general, more consistent with green-up 
events corresponding to November to January rainfall during 2007 and 2008 and increased spring 
temperature in February and March 2008. 
 

 
 
Figure 21: Monthly departure from average Landsat NDVI and EVI values for steep, shaded terrain across 
the study area. The dotted line (black) represents the percent difference between TM NDVI and EVI 
values. 
 
 Both NDVI and EVI produced inordinately high or low departure values for image dates with a 
low sun elevation angle (< 40◦). A comparison of mean VI departure values from pixels within shaded 
areas showed a significant difference between EVI and NDVI (U = 213, p < 0.001) with a median DA of 83 
and 170%, respectively, for the month of January. 
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Northeast-facing slopes and canyon areas with a lower amount of annual solar radiation 
typically maintain ephemeral herbaceous plants and deciduous shrubs in the study area (pers. obs.). In 
areas of steep and shaded terrain, MODIS NDVI DA was less sensitive to terrain and shadow effects than 
was EVI DA. EVI- and NDVI-derived departure values for shaded terrain in mountainous areas also 
showed a statistically significant difference (U = 101080.5, p < 0.001) for low sun elevation angle months 
such as January. In contrast, areas of low topographic variation showed nearly identical MODIS VI 
departure values, further indicating greater sensitivity of EVI to terrain effects. Areas of steep shaded 
terrain displayed significantly higher residual departure values than did values from level terrain (t = 
347.0, p < 0.001). 

This is particularly important when calculating DA values as a measure of annual and inter-
annual green-up events in areas of steep topography. Extremely low EVI departure values (≥ 20% lower 
than NDVI DA attributable to terrain and sun angle effects) negatively impacted time series data, 
erroneously indicating above-average greenness during hotter and drier months of the year that are 
typically associated with low productivity and senescence of winter annual grasses and forbs. Falsely low 
EVI values in shaded areas produced low annual average values for these pixels, resulting in higher than 
expected DA values for summer months. 

Use of WorldView-2 high spatial resolution imagery to detect desert invasive plants 13 

For 1,885 subplots located across the study area (2011 and 2012), Brassica was detected in a total of 
748 (40%). Brassica canopy cover averaged 7.5%. Average reference maximum biomass of Brassica was 
2.19 g/m2, but the estimated average Brassica biomass at plot scale was only 0.82 g/m2. Native 
herbaceous cover averaged 11%, average reference maxima for native herbaceous biomass was 1.64 
g/m2, and the average native herbaceous biomass was 1.17 g/m2.  

Accuracy was quite high for the WV2 MTMF classification using field collected spectra (overall 
88%). Producer’s values were 86% and 91% accurate for presence and absence, respectively, while 
user’s accuracies were 94% and 79%. The overall accuracy of resampled WV2 MTMF classification was 
67%. Under this classification, accuracy of producer’s values were 47% and 84% for presence and 
absence, respectively, and accuracy of users were 70 % and 66% for presence and absence, respectively. 
Finally, the ETM+ MTMF classification had an overall accuracy of 59%. Producer’s accuracies in this 
classification were 0% and 100% for Brassica presence and absence, respectively, whereas user’s 
accuracies were 0% and 59%.  

MF scores and Brassica abundance estimate 
Available WV2 scenes overlapped with 136 of the plots for which we were able to gather Brassica 
canopy cover estimates. Target detection rate in these plots was 58%. When WV2 MF scores were 
correlated with Brassica percent cover estimates, the coefficient of determination (R2) was 0.004 with p-
values of 0.473 and 0.011 for MF scores and infeasibility, respectively. When only the pixels with 
positive MF scores were correlated with Brassica canopy cover estimates, the regression coefficient of 
determination was only 0.06, but MF scores were a significant predictor variable (p-values of 0.002 and 
0.264 for MF scores and infeasibility, respectively). The R2 increased substantially to 0.21 when the 
predictor variable NDVI-B7 was added to the regression model (p < 0.001) and rose to 0.36 when the 
predictor variable NDVI-B8 (p <0.001) was added.  

The relationship between Brassica percent cover estimates and ETM+ MF scores was weak but 
significant (coefficient of determination R2 = 0.02; MF scores p = 0.04), and infeasibility values were not 
significant in this test (p = 0.51) (n = 1,465). The relationship was strengthened by restricting the analysis 
                                                 
13 These results have been peer-reviewed and published in Sankey, T., B. Dickson, S. Sesnie, O. Wang, A. Olsson, 
and L. Zachmann. 2014. WorldView-2 high spatial resolution improves desert invasive plant detection. 
Photogrammetric Engineering and Remote Sensing 80:885-893.  



59 
 

to plots with Brassica canopy cover estimates > 1 percent (n = 266) (R2 = 0.08; p < 0.001 and 0.74 for MF 
scores and infeasibility, respectively). 

NDVI and Brassica biomass  
WV2 NDVI-B7 and NDVI-B8 produced R2 values of only 0.03 (p < 0.001) when correlated with Brassica 
biomass measured at point locations in the field. Resampled WV2 NDVI-B7 and NDVI-8 produced an R2 
of 0.16 when regressed against Brassica biomass (p = 0.015 and 0.010, respectively). Results were 
similar when the same NDVIs were regressed against total native herbaceous biomass. ETM+ NDVI 
produced an R2 of 0.002 (p = 0.46) when regressed against Brassica biomass. 

WV2 imagery and invasive plant detection 
Our study provides the first quantitative evaluation of desert invasive plant detection using newly 
available, high-resolution WV2 data. WV2 data enabled detection of small populations of Brassica even 
in a dry year with relatively low plant productivity. Brassica presence/absence mapping with WV2 data 
produced overall accuracy of 89%. WV2 thematic classification overall accuracy was 82% in a forested 
environment (Immitzer et al., 2012), 77% in a savanna environment (Cho et al. 2012), between 57 to 
100% in an urban classification (Zhang & Kerekes 2011), and 63% in an urban tree species classification 
(Pu & Landry 2012). Producer’s accuracies for individual tree species mapped with other studies were 65 
to 82% (Cho et al. 2012), 33 to 94% (Immitzer et al. 2012), and 16 to 75% (Pu & Landry 2012), while 
producer’s accuracy for Brassica in this study was 86%. 

WV2 data provide a large improvement in accuracies for detecting invasive plant populations in 
desert environments. WV2 use in this study produced almost 30% greater accuracies than ETM+ 
classification. This is likely due to the high spatial resolution of WV2 data. Resampling 30-m pixels 
reduced accuracy by 20%, although the same bands, field spectra, and classification approach were 
used. The higher spatial resolution of WV2 data provides a key advantage in hot desert environments 
(Wallace & Thomas 2008; Casady et al. 2013) where invasive plant populations can become sparse 
during dry periods, but rapidly expand in favorable conditions. 

At the 30-m plot scale used in this study, average percent cover estimates of Brassica and other 
herbaceous classes were extremely low at (7.5% and 11%). Perhaps unsurprisingly, therefore, ETM+ 
MTMF classification performed poorly at this level of vegetation abundance, although MTMF is a sub-
pixel mapping method specifically developed to enhance target detection (Rencz 1999). The ETM+ 
MTMF accuracy from this study is similar to a previous Landsat TM-based invasive detection application 
in the Sonoran Desert, where accuracies ranged between 35 to 65% (Olsson et al. 2011). Although ETM+ 
MTMF overall accuracy was 59% in this study, MF scores were extremely low and MTMF did not detect 
Brassica presence, evidently because the low canopy cover in our study area limited detectability. 

WV2 imagery and herbaceous plant biomass 
Our research provided the first quantitative evaluation of high resolution WV2 data for estimating 
invasive and native winter annual biomass in an arid desert environment. These results carry 
implications for land management strategies, including fire response, a growing concern in this region of 
the Southwest in recent decades (Esque et al. 2013). Timely remote sensing assessment of desert fine 
fuels may help land managers monitor or mitigate damaging fire events in native vegetation 
communities of the southwestern US.  

WV2 NDVI appears to perform poorly in annual vegetation biomass estimates in arid desert 
environments during extremely dry periods such as the spring 2012 sampled in this study, when biomass 
of annual plants is low and their signatures weak. Poor performance might be due to georegistration 
errors between the images and point locations of biomass data, resulting in mismatched individual 
pixels with point locations. In light of the high temporal and spatial variability in winter annual biomass 
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in southwestern desert ecosystems, previous studies propose time-series applications in which pixels 
are compared to extremely dry years (Wallace & Thomas, 2008) or locations (Casady et al. 2013) to 
calculate relative winter annual biomass. In future studies, multitemporal WV2 data using the proposed 
methods may better capture temporal variability in winter annual vegetation biomass. Contrasting 
image dates of high and low annual productivity periods could produce better results than the moderate 
and coarse resolution time-series data, given the high spatial resolution and promising results from the 
binary classification in this study. 

Target-based mapping using field-based spectra and WorldView imagery  

Field data and Image based spectra analysis  
Within our WV2 scene focal area, a total of n = 114 plots were measured in 2012-2013, with Eragrostis 
detected on 96 plots. Of those, 21 were collected in 2013, concurrent with the acquisition of the WV2 
imagery. Plots without Eragrostis were a mix of bare soil and other non-native grasses (including the 
congeners Eragrostis chlormelas and Eragrostis superb). Common native grasses include Boutaloua spp., 
Sporobolus spp., Aristida spp., Bothriochloa barbinodis and Digitaria californica. Common woody species 
include Prosopis velutina, Gutierrezia sarothrae, Acacia spp., and Atriplex canecense.  
 Pearson correlation coefficients were used to determine the relationship between MF scores, a 
measure of detectability, and Eragrostis cover from field plot data collected in 2013. Results of the 
MTMF analysis with the two techniques are summarized in Table 6. Based on visual inspection of 
spectral plots and similarity among field-collected spectra of the non-target species with the target 
species (Figure 11), two different sets of non-target species were analyzed. The field-collected Eragrostis 
reflectance with two non-target tree species (Senegalia, Prosopis) was negatively correlated (r = -0.103) 
with MF score and known Eragrostis detections in field plots. A second analysis of the target spectra and 
six non-target species spectra (Senegalia, Prosopis, Hopia, Sorghum, Amaranthus, Atriplex) showed a 
slight positive increase in the relationship between the field-collected spectra and MF Score (r = -0.051).  
Image-collected EMs showed a positive correlation between WV2 detection of Eragrostis and known 
Eragrostis detections in field plots (r = 0.59).   
 
Table 6. Summary of Eragrostis canopy cover model performance, based on MTMF. 
 

 
 
 
 
 
 
 
 

 
The differences between target detection results from image-collected EMs and field-collected 

EMs suggest several areas for further review.  One is the FLAASH atmospheric correction involving 
radiative transfer algorithm MODTRAN (MODerate spectral resolution atmospheric TRANsmittance) 
applied to the image prior to analysis.  Previous research has shown that while the FLAASH correction 
can perform better than other atmospheric correction techniques, it can produce errors in the bands 
most sensitive to green vegetation (Manakos et al 2011, Matthew et al 2003).  We calculated surface 
reflectance using basic MODTRAN assumptions because spectral bands in portions of the 
electromagnetic spectrum used to assess aerosols, water vapor and other particles typical of 

Technique  Target spectra  Non-target spectra Accuracy (r) 
Field-collected 
spectra 

Eragrostis Senegalia, Prosopis -0.103 
Eragrostis 
 

Senegalia, Prosopis, Hopia, 
Sorghum, Amaranth, 
Atriplex 

-0.051 

Image-collected 
spectra 

Eragrostis Tree, Dirt road 0.59 
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hyperspectral sensors were not available for WV2 imagery (Jensen 2007). This likely resulted in less 
accurate surface reflectance calculations for the WV2 image and low correspondence with field spectra 
collected on the ground.  
 
Future applications of the WorldView platform 
WV2 2-m resolution and other multispectral sensors are impacted by background soil roughness and 
albedo contributing to spatial and spectral error (Song et al. 2001, Xu & Huang 2008). Further, we see 
that the differentiation of our target and non-target species spectra happens in the short-wave infrared 
(SWIR) and NIR bands. Future use of WV3 imagery, which collects 8 additional SWIR bands along with 
desert clouds and multiple aerosol bands for atmospheric correction, will allow for more robust image 
correction and surface reflectance calculation. Importantly, we have ordered WV3 data to be acquired 
concurrently with our 2015 field plot data and biomass measurements over the BANWR focal area. This 
timing will help to address the temporal mismatch that may have played a role here where field data 
and imagery acquisition did not occur concurrently, allowing for levels of green-up to have changed. 
 Overall, the image-based spectra and WV2 provided the more robust detection of Eragrostis. 
We found a stronger and positive correlation between MF scores and Eragrostis cover on plots 
suggesting that the target detection and MTMF methods used for study can aid in mapping non-native 
invasive plants. Further work is needed to understand how spatial context and other semidesert 
grassland vegetation may influence detection results and map accuracy. Moreover, we anticipate that 
WV2 or WV3 image data collected during years with more widespread green-up will help to reduce 
omission errors that likely occur for image dates with patchy green-up. Ultimately, field collected 
spectra may also afford accurate map prediction with improved atmospheric correction techniques. To 
extend this work, for example, to African buffelgrass, field plots will need to be established in areas with 
varied levels of buffelgrass cover.  As a species that is sometimes treated through physical removal or 
pesticide spraying, it will be important to coordinate imagery acquisition with field plot measurements. 
 In addition, the use of object-based analysis is being explored more as an alternative to 
supervised and unsupervised analyses in remote sensing. Coupled with high spectral and spatial 
resolution imagery, this approach combines selection of shape and texture of targets, increasing the 
data to draw upon for detection. This technique classifies features from the imagery rather than single 
square pixels through multi-resolution segmentation and can be used with multiple bands. The 
approach has been used with WV2 and produced 94% classification accuracy for wetland reed species 
(Phragmites australis) (Lantz & Wang 2013). 
 
Phenology-based mapping of habitat suitability using Google Earth Engine  
Random Forest models outperformed SVM models and were used to predict the occurrence of each 
target species. The final occurrence models were used, first, to compute the predicted probability of the 
occurrence of a target at each of the plots in our testing partition and, second, to create a spatially-
explicit prediction of its occurrence across the entire study extent. The former application was used to 
evaluate the expected out-of-box error rate for the model, while the latter was developed to inform 
management and planning decisions by mapping landscape risk (e.g., occurrence under different 
climatic conditions).  

If presence is considered a positive (1) and absence as a negative (0) result, then Figure 22 
illustrates the tradeoff encountered upon specifying a reasonable threshold. If the threshold is 
increased, the number of false positives decreases, while the number of false negatives increases.  
              The dashed lines (in Figure 23 and Figure 24, ‘a’ panels) indicate the location of the false-positive 
rate/true-positive rate (FPR/TPR) corresponding to a threshold of 0.5. Note that the origin (bottom left; 
0, 0) and top right corner (1, 1) are associated with a threshold of 1 and 0, respectively. The cost 
function and corresponding color of the ROC points (‘b’ panels in Figures 21 and 22) illustrate that an 
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optimal false-positive rate and true-positive rate combination is determined by the associated cost. The 
dashed lines in the ‘b’ panels of Figures 23 and 24 correspond to an arbitrary threshold of 0.5. 

The AUC for the SCHIS model was 0.877, while the AUC for the BRTO occurrence model was 
0.855. Note that the cost associated with the arbitrary threshold of 0.5 shown in Figures 23 and 24 
(panel b) is not minimized. The final threshold selected for Schismus, based on the cost function and the 
optimization criteria described above was 0.43. The threshold selected for Brassica was 0.38. These can 
be identified by the inflection point (and greenest circles) in their respective cost function curves.  

 
Figure 22: Jitter plot showing the distribution of absence and presence records (0 and 1 along the x-axis, 
respectively) for Schismus on the predicted occurrence probabilities. An arbitrary threshold (the 
horizontal black line) of 0.5 is displayed for illustration purposes only and does not reflect the threshold 
selected to reclassify the spatially-explicit predictions described below. 
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Figure 23: a) ROC curve and b) cost function for the Schismus occurrence model. An arbitrary threshold 
of 0.5 was used here for illustration purposes only. The 1:1 line in blue indicates a hypothetical ROC 
curve in which a model would perform no better than chance.  
 
 

 
Figure 24: a) ROC curve and b) cost function for the Brassica occurrence model. An arbitrary threshold of 
0.5 was used here for illustration purposes only. The 1:1 line in blue indicates a hypothetical ROC curve 
in which a model would perform no better than chance.  
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Maps of species occurrence and landscape risk 
Spatially-explicit maps of the occurrence of each species were derived using the same variables used to 
fit and evaluate the models. However, because some of the features used in the model are tied to, e.g., 
climatic conditions in certain time-windows, occurrence could be predicted under different scenarios. 
Hence, we were able to model landscape risk. Specifically, we predicted occurrence probability both 
during the last year of the SERDP sampling effort (2012), which was an unproductive, dry year in the 
Sonoran Desert in Arizona, as well as a productive, wet year (2005). The predicted occurrence 
probabilities for Schismus and Brassica are shown in Figure 25 and Figure 26, respectively.  
 

 
Figure 25: Predicted occurrence probability for Schismus in 2005 and 2012 (left and right columns, 
respectively). Results shown in the maps in the bottom row of the figure have been masked using the 
threshold identified during the model evaluation step (i.e., 0.43). 
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Figure 26: Predicted occurrence probability for Brassica in 2005 and 2012 (left and right columns, 
respectively). Results shown in the maps in the bottom row of the figure have been masked using the 
threshold identified during the model evaluation step (i.e., 0.38). 
 

Maps of the difference between predicted occurrence probabilities in 2005 and 2012 were also 
produced. Those results for both Schismus and Brassica are shown in Figure 27 and Figure 28, 
respectively.  

The models derived for Schismus and Brassica fall in the ‘good’ range according to conventions 
on AUC-related performance measures. The thresholds derived from the cost functions for each species 
were both < 0.5, which reflects the relative costs assigned to false-positive vs. false-negative cases a 
priori. Essentially we made the determination that false-negative cases were twice as costly as false-
positive cases, since the ecological consequences of Schismus and Brassica going undetected outweigh 
the consequences of overestimating their occurrence. The spatial distribution of predicted occurrence 
probabilities in the bottom row of Figures 23 and 24 reflect the effect of this decision. A different cost 
specification would have led to slightly different results.  
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Figure 27: Difference between the predicted occurrence probabilities in 2005 and 2012 for Schismus. 
Blue regions indicate higher predicted occurrence probabilities in 2005 while red regions indicate higher 
predicted occurrence probabilities in 2012. 
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Figure 28: Difference between the predicted occurrence probabilities in 2005 and 2012 for Brassica. 
Blue regions indicate higher predicted occurrence probabilities in 2005 while red regions indicate higher 
predicted occurrence probabilities in 2012. 
 

Overall, we obtained strong predictive models for the two species for which we had adequate 
sample sizes. While we did not have the sample sizes required to create similar (and robust) models for 
the remaining species (i.e., Bromus, Eruca, and Pennisetum), the sampling design can contribute to 
models in the future if sampling is extended to include additional years or regions. Extending sampling 
efforts to include areas outside of the 2011 study area extent would be especially critical in detecting 
Bromus and Pennisetum, whose ranges do not appear to be centered in the SERDP study area.  

As expected based on our observations during the 2011 and 2012 sampling seasons, Schismus 
appears to be more pervasive across the landscape than Brassica. The distribution of Brassica appears to 
be more patchy, with well-defined areas of high-occurrence probability (e.g., the areas north of 
Quartzsite and near Parker, AZ). Interestingly, the spatial distribution of Schismus presence appears to 
be less sensitive to changes in climatic conditions, while the distribution of Brassica expands markedly as 
a function of changing climatic conditions.  

The difference in the magnitude of predicted occurrence probabilities between 2005 and 2012 
deserves special attention. Specifically, the predicted occurrence probability for Schismus is not 
uniformly higher in the wetter, more productive year as it is (with very few exceptions) for Brassica. For 
instance, wetter, more productive conditions appear to favor Schismus southeast of Kofa National 
Wildlife Refuge (KNWR) while dry, unproductive conditions may slightly favor Schismus across much of 
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the south-central portion of the study area. Overall, Schismus maintains a relatively stable and pervasive 
presence across the landscape and across years.  

 
A spatially weighted ensemble and MODIS phenology-based approach for mapping Sonoran Desert 
invasive annual plants 
SWE models performed better than Regional models for both Brassica and Schismus, indicating that 
some factors better distinguish invasive species at a local scale than at a larger scale. Model results and 
accuracy estimates using Cohen’s kappa coefficients for MODIS- and Landsat-scale models are given in 
Table 7. Cohen’s Kappa is a statistical measure of agreement between predicted and actual occurrence 
records on plots and subplots ranging from -1 to +1. Kappa coefficients greater than 0.80 are generally 
accepted as high accuracy however lower scores can be acceptable depending on objectives (Congalton 
and Green 1999). Overall prediction accuracy for Schismus was low: this species is ubiquitous in the 
study area but occurs in small populations, showing a high detection rate but low mean cover in 2012. 
Greater prediction success was obtained for Brassica (Table 7). 
 

Table 7. Cohen’s kappa for regional and SWE models of 
Schismus and Brassica derived from 2011 field data. 

 
 
 
 
 
 
 

The differences between Regional and SWE MODIS models were greatest in the northwest, 
where SWE predicted greater likelihood of Brassica, and in the southwest, where SWE predicted less 
likelihood of Brassica (Figure 12). This discrepancy emerges from temporal and spatial variability, 
reflecting the occurrence of dense stands of Brassica, which we observed between 2009-2012, as well as 
increased cover of Brassica in the northwest portion of the study area. Landsat models for Schismus 
followed MODIS models in poor overall performance, but Landsat models for Brassica exhibited a 
different pattern. The model derived from the p38/r37 tile was the best model overall. From the density 
of Brassica observations in both 2011 and 2012, the densest patches of Brassica were in the western 
half of the study area, which is covered by p38/r37; higher densities are easier to model. We surmise 
that two consecutive dry years (2011 and 2012) resulted in lower overall Brassica and Schismus cover in 
2012 than for 2011, which was likely still responding to the wet year of 2010, which boosted the viable 
seedbank for both species. 

Out of the 236 plots we measured, presence of Brassica was observed on 113 plots. Mean ĸ for 
the RSM and the full dataset was ĸ = 0.61, vs. a mean ĸ for the training data (ĸ = 0.56). The highest mean 
ĸ values were associated with the IDW models, but the only models with ĸ significantly greater than ĸ of 
the regional models (p < 0.0001) were IDW2, IDW2K, IDW4, and IDW4K. LRM, both WLMs, and all other 
SWEs were no better than the regional model (p > 0.09). The RSM performed significantly better than 
the LRM WLMs and six of the 10 SWEs (i.e. LIN, LINK, TPS4, TPS4K, TPS5, and TPS5K). IDW4 and IDW4K 
performed best overall and were equivalent. For simplicity, IDW4 (ĸ = 0.58) was selected as the SWE 
model approach for predictive modeling of Brassica occurrence for the entire study area.  

The final regional and SWE models using IDW4 were produced using the full set of 236 plots. The 
SWE predicted areas of greater Brassica in the NW and NE portion of the study area and the regional 
model predicted higher Brassica in the SW portion of the study area. Areas known to maintain more 
extensive populations of Brassica, such as the NW corner of the study areas showed as much as 20% 

 
Schismus Brassica 

 
Regional SWE Regional SWE 

MODIS 0.435 0.429 0.561 0.576 
TM p37r37 0.327 - 0.446 - 
TM p38r37 0.449 - 0.599 - 
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higher occurrence probability in the SWE model. Indeed, Pearson correlation coefficients between 
Brassica canopy cover and occurrence probability were higher for the SWE model in both 2011 (SWE r = 
0.27, RSM r = 0.25) and 2012 (SWE r = 0.27, RSM r = 0.13). Extremely low Brassica cover was measured 
on field plots in both years because of below average winter and spring precipitation. However, SWE 
models appeared to show a moderately positive relationship between Brassica cover and predicted 
occurrence for areas with higher canopy cover in 2011 and 2012. Regional model predictions showed 
little or no relationship with differences in Brassica cover on plots.   

Elevation and mean NDVI of spring 2004 were the two most important variables for both 
regional and SWE models, while the relative importance of spring vs. fall predictor variables differed by 
model type. Fall NDVI phenology metrics were the most prevalent predictors for Brassica presence (6 of 
12 variables), with three models associated with mean fall NDVI, one with maximum fall NDVI, one 
related to amplitude, and another related to the mean maximum fall NDVI. Spring NDVI variables were 
also important (4 of 12 variables) with mean and max spring NDVI from 2001 and 2004 among the top 
eight. The most important phenology variables were mean and max spring 2004 NDVI, respectively, for 
the RSM. Variables associated with the timing of maximum spring or fall NDVI were not included in the 
top 12. The mean variable importance across all SWE LRM also highlighted elevation and mean and 
maximum NDVI from spring 2004 as the most important variables. Fall variables showed less importance 
overall, with only four in the top 12 and none in the top six. Five spring NDVI variables were included in 
the top 12: mean/maximum spring NDVI in 2001 and 2004 and timing of maximum spring 2005 NDVI. 
Overall, SWE models showed a tendency to select variables for years with relatively moist winter/spring 
conditions. Another notable difference in variable importance was the inclusion of the Landsat TM PC3 
from August of 2009, which distinguished vegetation between eastern and western portions of the 
study area.  

We identified the maximum variable importance for each variable across all models. This 
enabled us to identify variables with strong local predictive power. The balance of important 
winter/spring vs. summer/fall phenology variables was higher than both the RSM model and the 
variable importance means across all SWE LRM. Six of the top 12 variables were based on spring NDVI 
whereas only three were based on fall NDVI. Additionally, the top 12 variables included three related to 
the timing of maximum NDVI, all of which are from a different time period (i.e. spring 2001, spring 2005, 
and fall 2001). The spatial variation of predictor variables with high importance was indicative of how 
non-stationary factors can be essential to predicting the presence of Brassica using phenology metrics. 
The SWE model outputs indicate that the timing of maximum spring and fall NDVI were important in the 
western portion of the study area, where extensive areas were by Brassica during years with above 
average rainfall. Conversely, no time-related predictors were important to detecting the presence of 
Brassica in the eastern portion of the study area, where invasions are less extensive.   

A cross-comparison of variable importance for regional and SWE models showed that LRM were 
more likely to be influenced by timing variables and maximum seasonal NDVI. The timing of maximum 
fall and spring NDVI were of greater importance to SWE models than to the regional model which was 
more highly influenced by fall phenology and mean and maximum NDVI. The balance of spring and fall 
phenology timing variables fell above the 1:1 line, indicative of timing variables being more important in 
local than regional models.  

Task 12: Non-native mapping (Hyperion-hyperspectral) (phase 1) 
Low image quality and cross-track striping contributed to poor model results when Hyperion-
hyperspectral data were used. This was the case for any selected reference spectra; MTMF-based 
models were contaminated by the excessive striping that is characteristic of Hyperion bands. The low 
maximum cover of each target species in field data (< 25%) made selection of reference spectra from 
these data infeasible. Pearson’s correlation between individual SMACC-derived EM and Brassica cover 
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ranged from -0.500 to 0.398. The maximum correlation was with EM 26 (Figure 29). EM 26 corresponds 
with sandy flat areas north of Quartzsite, AZ, consistent with field observations of high abundance of 
Brassica and Schismus. This indicates high potential for Brassica and Schismus to be mapped effectively 
with hyperspectral imagery, but the sensor quality of Hyperion dramatically degraded our results. 
Correlation between EMs and Schismus ranged from -0.080 to 0.070. Maximum correlation occurred 
with EM 1.  
 

 
Figure 29: Map of SMACC EM 26, which had the highest correlation with Brassica cover on intersection 
subplots. Percent cover of subplots (red circles) are indicated by larger symbol radii.  
 

In addition to poor image quality, uncertainty in the precise spatial location of image acquisition 
led to unsatisfactory overlap between the Hyperion image and field data. We were unable to employ 
methods that would allow us to map target species utilizing the phenologic information potentially 
contained in multitemporal hyperspectral images, due to a lack of multiple scenes. Given these 
problems, we did not choose to perform the second phase of non-native target species mapping using 
Hyperion hyperspectral imagery. Drought conditions alone would have limited our ability to combine 
Hyperion data with field data, but unreliable timing and geographic location of image acquisition made 
it still less feasible. 
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In spite of the problems we encountered with Hyperion imagery, multitemporal HyspIRI appears 
to be a valuable tool for mapping invasive species of the Sonoran Desert. A recent study showed that 
Pennisetum is easily identified in simulated HyspIRI imagery (AVIRIS airborne hyperspectral imagery) 
when it is the most abundant constituent of a pixel (Olsson & Morisette 2014). This is reasonable, given 
the dramatic structural differences between invaded and uninvaded desert pixels; namely, the 
replacement of bare ground by senesced (and flammable) vegetation. Hyperspectral imagery such as 
HyspIRI (and Hyperion) can discriminate between these two structural differences due to a cellulose-
lignin absorption feature in the shortwave infrared that is characteristic of senesced herbaceous 
vegetation. Brassica and Schismus infestations are characterized by high densities of senesced 
herbaceous vegetation in the arid foresummer (i.e., April through June). This is also the key component 
that leads to Mojave Desert wildfires where Bromus is present (Brooks et al. 2004). Although Landsat 
TM and other multispectral sensors do have bands in the shortwave-infrared, they do not have the 
spectral resolution of HyspIRI and other hyperspectral sensors necessary to distinguish the narrow 
absorption feature associated with cellulose and lignin (Daughtry et al. 2006).  

 
Go/No-Go decision point #2: 
In light of the limitations posed by the Hyperion data acquisition process, and considering the uncertain 
status of the Landsat Data Continuity Mission, we decided not to pursue the second phase of Hyperion-
based modeling. Instead, we acquired higher spatial and spectral resolution imagery from the Sistema 
Para la Observacion de la Tierra (SPOT) and WorldView2 (WV2) satellites across much of the study area 
during the 2012 field season (Figure 30). This imagery was collected at no cost to our SERDP project 
through the President’s US Commercial Remote Sensing Space Policy, accessed through the Commercial 
Image Data Requirement by Co-PI Sesnie with the USFWS. Each of the two satellite platforms provides 
an image data source that is readily available to federal agencies under current vendor agreements. 
Image dates from 2012 range from January 16th to April 16th.   
 

Figure 30: A) Footprint of Wordview 2 images (blue) acquired during the 2012 field season. B) Footprints 
of SPOT Imagery during the 2012 field season. 

 

A 

 
 

B 
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WV2 imagery was collected until February 14th over approximately half of the study area in two 
1˚ x 1˚ consolidated areas. Image data collection was focused on areas sampled during plot 
measurements taken in 2012. SPOT 10-m data cover green, red, NIR, and shortwave infrared 
wavelengths that are appropriate for vegetation applications. The WV2 platform is among a new 
generation of high-resolution commercial satellites producing 2-m multispectral and 0.5-m 
panchromatic imagery. WV2 multispectral channels cover the visible and NIR spectral range (400 – 1050 
nm) with yellow (585 – 625 nm), red edge (705 – 745 nm) and NIR 2 (860 – 1040 nm) bands, for a total 
of eight bands (Figure 31). WV2 is strategically designed and centered on more narrow spectral channels 
for vegetation analysis and, prior to this project, has been relatively untested for mapping target 
invasive species in the study area and elsewhere (Figure 32).  

 

 
Figure 31: Spectral bands of WorldView-2 , Landsat TM, SPOT5, and Hyperion satellite sensors. The 
yellow, red edge, and NIR2 bands are unique to WorldView-2 among present-day multispectral sensors. 
 

Given the spatial and spectral characteristics of both SPOT and WV2, our objectives for an 
alternative to task 11 were to 1) develop and test the potential for mapping target invasive plant 
distributions using single-date image classification techniques, 2) determine the feasibility of fine-scale 
mapping of small populations of target species, and 3) explore image fusion and other modeling 
techniques to potentially improve methods for characterizing fine fuel biomass in the study area. Our 
collaborators in particular will benefit from research exploring commercial alternatives in light of the 
current unavailability of Landsat TM and uncertainties surrounding the future of Landsat in general. 
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Figure 32: WorldView-2 imagery of abandoned farm fields dominated by Eruca located near Sentinel, 
Arizona. Images are WorldView-2 band combinations 5, 7, and 3 (left) and 4, 8, and 6 (right). 

Comparison of simulated HyspIRI with two multispectral sensors for invasive species mapping14 
The area under the ROC curve associated with the AVIRIS15 MTMF model was 0.932, when contrasted 
against the reference polygons. This output indicates a very strong estimate of Pennisetum abundance. 
Visual comparisons of aerial photography, digitized polygons, and MTMF and our experience with field 
work in the area suggested that the AVIRIS model is actually better than the manually interpreted 
dataset. The threshold we had previously selected was an 82.0% likelihood based on the logistic model, 
corresponding to a threshold of 0.4 in the MTMF output. 

Modeled Pennisetum abundance was 1.30% of the study area, inhabiting primarily palo-verde-
dominated scrub (0.74% of the study area and 3.94% of the total Sonoran Paloverde-Mixed Cacti Desert 

                                                 
14 The below results have been peer-reviewed and published in Olsson, A. D., and J. T. Morisette. 2014. Comparison 
of simulated HyspIRI with two multispectral sensors for invasive species mapping. Photogrammetric Engineering 
and Remote Sensing 80:217-227. 
 
15 AVIRIS was the actual hyperspectral sensor used for this study, to simulate future data acquired by HyspIRI. 
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Scrub cover), but also higher elevation scrub (0.24% of the study area and 1.71% of Chihuahuan Mixed 
Salt Desert Scrub) and higher elevation grassland (0.17% of the study area and 1.95% of the Apacherian-
Chihuahuan Piedmont Semi-Desert Grassland and Steppe).  

Random Forest models for all sensors and spatial resolutions yielded R2 values ranging from 
0.268 (Landsat TM, 60m) to 0.843 (HyspIRI, 15m). Decremental variable selection identified two narrow 
bands in the SWIR2 region as the most important variable for all three ASTER and HyspIRI models: 2.205 
and 2.207 μm for ASTER and HyspIRI respectively. Aside from the 2.205-2.207-μm emphasis, ASTER and 
HyspIRI models were strongly linked to SWIR bands. The 60m HyspIRI model, for example, did not 
include any bands below 1.165 μm in its best model, which included 5 bands in total. The 15m ASTER 
model was complemented by strong variable importance values in its 2.33 μm and 2.26 μm bands. In 
fact, the 2.26 μm band was the second or third most important variable for ASTER for all three 
resolutions. Landsat TM models identified the red band, centered at 0.66 μm in the 15 and 30m models 
and the SWIR1 band, centered at 0.83 μm in the 60m model. 

Model fitness values (R2) for sensors in their native resolutions were 0.384 (30m Landsat TM), 
0.785 (15m ASTER), and 0.637 (60m HyspIRI). HyspIRI was the best model overall at each resolution. For 
any given effective patch size, the native resolution ASTER model performed better than the HyspIRI 
model. TM outperformed HyspIRI for patches between 612 m2 and its GIFOV (900 m2). HyspIRI 
outperformed Landsat for all patch sizes of 1440 m2 or larger. Due to aggregation of smaller patches into 
larger pixels in the case of HyspIRI and, to a lesser extent, Landsat TM, there was minimal overlap in 
most patch sizes modeled by ASTER and HyspIRI (144 to 225 m2), although the differences were striking 
even in that small range. 

The number of bands selected for the final models were relatively low (i.e., seven or below for 
all but one model), although the best TM models always had five, indicating that only one variable was 
excluded from the final model. In the case of TM, the dropped variable was always either band 5 or 7, 
both of which are SWIR bands. In all cases, the remaining SWIR band was either the least or second least 
important of the remaining five. Considering the high importance of narrow SWIR bands in the well-
performing ASTER and HyspIRI models, we surmise that the two TM SWIR bands are simply too broad 
(wavelength-wise) to bring narrow-band SWIR features associated with Pennisetum invasion into focus. 
The best model overall, both in terms of Cohen’s Kappa and in terms of model R2, was the HyspIRI 15m 
model, which utilized just 6 bands. Again, the three most important bands had center wavelengths of 
2.12 μm or longer. 

OBJECTIVE 2: Model invasion risk from non-native plants under current and projected climate 
conditions. 
Task 7: Construct BEMs for current climate  
Brassica and Bromus occupy distinct climatic zones, with Brassica found in lower elevation, drier sites 
and Bromus in higher elevation sites with slightly more moisture. Brassica is currently more likely to 
achieve high abundance in southern Arizona (Figure 33), while high abundance of Bromus is more likely 
in northern Arizona and Nevada. In the future, reduced moisture in the southwest is likely to reduce the 
abundance of both invasive plants in southern Arizona (Figure 33), perhaps also reducing annual fire risk 
associated with these species. Climatic suitability combined with landscape-scale predictors, such as 
disturbance and soils, can improve hierarchical risk assessments of invasion risk.  
 There was strong overlap between the two BEMs in projections of current climatic suitability in 
southern Arizona and California (Figure 33A,B). Model uncertainty (regions where only one of the two 
models predicted climatic suitability) was highest for Bromus abundance in Nevada and northern 
Arizona and for Brassica presence in northern Mexico. Whereas results presented here are based on 
RCP 4.5 (Figure 33), projections were largely similar when RCP 8.5 was used (Curtis & Bradley 2015).  
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Figure 33: Species distribution models for Bromus and Brassica within convex hulls of all available 
distribution data (dashed lines). Point locations indicate where presence (A) and high abundance (B) data 
were collected.  The predicted current climatic suitability for presence (A) and high abundance (B) 
include the MaxEnt and Bioclim projections and encompass 95% of the original distribution data. Future 
ensemble models are based on RCP4.5. The future ensemble models for presence (C) and high 
abundance (D) were created by combining the projections of 10 models: two bioclimate envelope 
models and five Atmosphere-Ocean General Circulation models. Values indicate how many of the 10 
models projected climatic suitability. 

 Current climatic suitability for Bromus and Brassica presence extends throughout the study 
region, consistent with known location points (Figure 33). Suitable climate for Bromus high abundance is 
currently limited to relatively small areas of southern California, Nevada, and Utah and a larger region of 
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central and northwestern Arizona (Figure 33). Suitable climate for Brassica high abundance occurs 
primarily in southern California (Figure 33). Based on the AUC statistic for MaxEnt models, the projected 
models performed better than expected by random chance. The smaller suitable range for high 
abundance (relative to presence) for both species supports previous findings that models of potential 
establishment overestimate potential impact (Bradley 2013). Based on the MaxEnt models, different 
climate conditions influences species presence vs. high abundance. For both Bromus and Brassica, 
temperature was by far the strongest predictor of presence (minimum temperature for Bromus and 
maximum temperature for Brassica). For Bromus this result suggests that freezing tolerance may limit 
the species’ survival over winter, which is consistent with experimental studies (Bykova & Sage 2012).  
For Brassica, this result suggests that the species effectively establishes under hot conditions, which is 
consistent with its measured heat tolerance (Suazo et al. 2012). 
 In contrast, minimum temperature and spring precipitation were both strong predictors of 
abundance for Bromus and summer precipitation was the strongest predictor of abundance for Brassica.  
Both invasive species are likely to better compete against native species (e.g., Barrows et al. 2009)  and 
have stronger population growth (Beatley 1974, Salo 2004) under wetter conditions. Thus, while 
temperatures limit the overall range, precipitation appears more likely to influence invader abundance. 
 Although our presence and abundance datasets for the two species are compiled from all 
available sources, several portions of their ranges are undersampled. In particular, our data do not 
extend into Mexico even though the species are not limited by political borders. These spatial biases in 
the distribution datasets could lead the BEMs to underestimate climatic suitability under current and 
future climate. Additionally, Worldclim climate data are based on interpolations of weather stations.  
Although the U.S. is well instrumented, the Southwest is more prone to larger distance gaps between 
weather stations, which increases uncertainty associated with climate interpolations. As a result, the 
precision of any given pixel should not be over-interpreted, as climate conditions underlying the BEMs 
are modeled interpolations rather than precise field measurements. 
 

Task 8: BEM uncertainty analysis under future climate conditions 
Projections of future climatic suitability for Bromus and Brassica presence and abundance under the 
RCP4.5 emissions pathway are shown in Figure 33C-D, respectively. The model projections based on 
RCP4.5 vs. RCP8.5 were similar both in overall magnitude of calculated range shift as well as spatial 
pattern.  For simplicity, we present the results from RCP4.5 here and only note the RCP8.5 results in two 
cases where there is a substantive difference. Most models agreed that large areas will be suitable for 
Bromus presence in the future (Figure 33C). Future suitability for Bromus abundance is projected to be 
greatest in northwest Arizona, southwest Nevada, and Baja California, Mexico based on ensemble model 
overlap (Figure 33D). Based on the high threshold (six or more models projecting suitability), climatic 
suitability for Bromus presence could expand by 12% along the northern edge of the currently suitable 
range. However, contraction along the southern edge is also predicted, with areas primarily in Arizona 
becoming unsuitable. This southern contraction is more prominent throughout southern Arizona and 
California using the RCP8.5 projections. Using a more inclusive low threshold (one or more models 
projecting suitability), climatic suitability for Bromus presence could expand northward up to 65%. In the 
model projections, northward expansion is primarily driven by warming temperatures, which is 
consistent with experimentally derived limitations. Bykova & Sage (2012) show that Bromus is sensitive 
to freezing temperatures and is not as cold tolerant as the related species Bromus tectorum.   
 High abundance of Bromus based on the high threshold could decrease by 42%. However, using 
the more inclusive low threshold, climatic suitability for high abundance could expand northwards by as 
much as 64%. The large differences in potential future range illustrate uncertainty associated with both 
differences between BEMs and climate projections. Highest confidence in future range occurs in areas of 
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model overlap (darker parts of Figure 33). Areas of expansion in southern Nevada, northwestern 
Arizona, and Baja California, Mexico show the highest model agreement (Figure 33) and are the most 
likely to see a shift towards high abundance of Bromus with climate change. Interestingly, Bromus is 
already present throughout southern Nevada, making it likely that populations will not be limited by 
propagules and could expand rapidly once climate conditions become suitable. 
 The future presence model of Brassica shows high model agreement in southern California and 
Nevada, and throughout much of Arizona (Figure 33C). Future suitability for Brassica is projected by 
most models to occur in southern California (Figure 33D). Based on the high threshold (six or more 
models projecting suitability), climate conditions suitable for Brassica presence are projected to 
decrease by 34% overall, with areas in southern California, eastern Nevada, and Mexico becoming 
unsuitable.  Using the more inclusive low threshold (one or more models projecting suitability), climatic 
suitability for Brassica could expand up to 29%. 
 High abundance of Brassica based on the high threshold could decrease by 56%, while using the 
more inclusive low threshold, climatic suitability for high abundance expands by 28% (Figure 33D).  
Expansion of high abundance with the low threshold result is substantively larger with RCP8.5 models, 
with ranges 71% larger primarily in western Arizona and southern Nevada. The difference between 
these two projections can primarily be attributed to how the BEMs interpret high temperatures for 
Brassica. Bioclim identifies a high temperature threshold, above which conditions become unsuitable, 
while MaxEnt considers all high temperatures suitable, including those with current no-analog 
conditions.  While Brassica has a broad tolerance for warm temperatures (Suazo et al. 2012), it is not 
clear whether it is approaching its high temperature limit within its current range. Further experimental 
analyses are required to enable better interpretation of the model results. 
 

OBJECTIVE 3: Model the impacts of recent and on-going land use disturbances on non-native plant 
invasion. 

Task 9: Land use models of disturbance and risk 
The Landsat map of Brassica presence/absence had an overall accuracy of 76%, determined via 566 
distributed field survey locations (Table 8). This accuracy is similar to those of previously-developed 
landscape-scale maps of plant invasions (Bradley & Mustard 2005, Peterson 2005) and is sufficient for 
evaluating the relevance of geographic features to likelihood of invasive species presence.  
 
 
 
 
 
 
 
 
 
Plant invasions are often strongly linked to disturbance features like roads (Gelbard & Belnap 2003, 
Bradley & Mustard 2006), which represent dispersal corridors for seeds transported by vehicles as well 
as locations of increased resource availability due to water runoff and active scraping/loss of native 
species along road verges. However, we found that Brassica invasion was not correlated with proximity 
to roads. Instead, Brassica presence was correlated to location of railroads, suggesting that these 
corridors facilitate invasive species establishment or spread (Figure 34). The species’ presence was also 
correlated with physical geographic features, including shallow slopes, lower elevations, and sandy soils 

Table 8: Contingency table for Landsat-based map of Brassica. 
 

 Map predicts 
present 

Map predicts 
absent 

Producer’s 
accuracy 

Field present 118 85 58% 
Field absent 51 312 86% 
User’s accuracy 69% 79% 76% 
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(Figure 34). We used these factors to predict landscape-scale invasion risk from Brassica within 
climatically suitable areas.  

Note that more recent results on disturbance and risk are detailed in section on Phenology-
based mapping of habitat suitability using Google Earth Engine (Task 6). 

 

 
Figure 34: The relative percentage of pixels with Brassica present and absent relates to disturbance and 
geography.  A) Proximity to railroads is a strong predictor of Brassica presence, and B) Brassica is highly 
likely to be found on sandy geologic surfaces. 

OBJECTIVE 4: Model the effects of increased fuel loads caused by non-native plant invasion on 
regional fire risk.16 

Task 10: Fire modeling outputs 
Modeling and mapping large fire probability 
The compiled fire occurrence dataset included 316 small and 79 large fires that burned within the study 
area between 1989 and 2010. Over these 22 years, large fires burned a total of 57,000 ha. The 
extremely high fire year of 2005 saw the greatest number of large fires (n = 36) and highest total area 
burned (51,700 ha). The median size of a large fire in 2005 was 95 ha, whereas the 22-year median size 
of a large fire was only 60 ha.  

The AIC of our full model of large fire probability was 71 units less than (i.e. better than) a null 
model containing only the random effects. The Hosmer–Lemeshow test did not indicate a significant 
lack of fit (P = 0.25). The ROC value for this model was 0.85, suggesting excellent discrimination. Among 
explanatory variables, areas with high maximum annual NDVI (w + (j) = 1.00), low elevation (1.00) and 
low road density (1.00) were the most strongly associated with higher large fire probability. Low 
                                                 
16 For Objective 4, results have been peer-reviewed and published in Gray, M. E., B. G. Dickson, and L. J. 
Zachmann. 2014. Modelling and mapping dynamic variability in large fire probability in the lower Sonoran Desert 
of south-western Arizona. International Journal of Wildland Fire 23:1108-1118. 
– AND – 
Gray, M. E., and B. G. Dickson. 2015. A new model of landscape-scale fire connectivity applied to resource and fire 
management in the Sonoran Desert, USA. Ecological Applications 25:1099-1113. 



79 
 

vegetation heterogeneity was a strong predictor (0.90), as were south-facing slopes (0.80). Maximum 
NDVI as a lagged variable was less influential than the year-of-fire maximum NDVI, but was still a strong 
predictor (0.70). Topographic roughness was also a strong predictor of large fire probability (0.58), but 
less than the other variables we considered. 

Random effects ranged from <10 to >300% of normal winter precipitation. The best linear 
unbiased predictors for the random effects (Faraway 2005) revealed that precipitation anomalies in the 
two antecedent winters had different predicted effects on large fire probability, but without discernible 
pattern. 

Maps of the moderate (1996) and high probability (2005; Figure 35) scenarios showed very 
different patterns of large fire probability across the study area. In 1996 there were only a few isolated 
patches of very high large fire probability (e.g., >60%), whereas in 2005 there were much more 
widespread and spatially contiguous areas of very high probability. Over the entire study area, the mean 
probability of large fire was 0.13 (s.d. = 0.08) and 0.37 (0.21) in 1996 and 2005. 

 
 
Figure 35: Map-based prediction of large fire probability in the lower Sonoran Desert of southwestern 
Arizona, based on 2005 conditions (i.e., high large fire probability).  The ignition points of large (≥20 ha) 
fires that burned in 2005 are represented by black dots. 
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Models and maps of fire behavior and hazard 
As expected, we observed minimal heterogeneity in fire behavior and hazard across our study extent 
using ‘off-the-shelf’ Landfire inputs under the 96th percentile weather and fuel conditions described 
above. Surface fire was the dominant potential fire behavior, with a few heterogeneous patches of 
passive and active canopy fire in the southeastern region of the study area (Figure 36). Our models 
predicted that surface fire was likely across most fuel models and dominant vegetation types, including 
those occurring on DOD installations and adjacent lands. We intentionally overestimated average wind 
speeds, first at 20 kph and then at 40 kph, to force potential fire behavior and hazard. Figure 36A and 
36B present 20-kph wind scenarios with gridded winds, and Figure 36C shows a 40-kph wind scenario 
without gridded winds. With 20-kph winds, the majority of canopy fire patches were characterized by 
passive rather than active canopy fire, whereas active canopy fire characterized most fire patches 
modeled under 40-kph wind scenarios. Potential canopy fire occurred between 1000-1300 m in 
moderate load grass-shrub fuel types and between 700-1100 m in high load shrub types. Both current 
fuel models and empirical evidence suggest that canopy fire is an extremely rare fire behavior in our 
study area. Across the study area, the highest intensity fires burned in high load shrub fuel types and 
moderate load grass-shrub fuel types. In low and moderate load grass, and low load shrub and grass-
shrub fuel types, fire intensity was lower. Without gridded winds, simulations predicted that topography 
will exert minimal influence on the rates of spread within fuel types. Fire spread was fastest in high load 
shrub (350+ chains/hour), very high load shrub (250-300 chains/hour), and moderate load grass (150-
200 chains/hour) fuel types.  

After the 2012 field season, it was possible to recalibrate fuel models using both seasons of field 
data and new models of vegetation composition, structure, and biomass. These efforts also integrated 
the utility of ArcFuels (www.fs.fed.us/wwetac/arcfuels) for developing alternative fire risk and 
management scenarios in a spatially explicit decision-support framework, and were further extended by 
an ongoing graduate student thesis project examining fuel and fire connectivity across the study area. 
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Figure 36: FlamMap simulation outputs for predicted potential (A) fire behavior, (B) hazard, and (C) rate 
of spread with constant winds blowing from the southwest at 40 kph and under current landscape and 
fuels conditions. 

Modeling and mapping fire connectivity 
Our historical fire evaluation dataset consisted of 4,003 burned pixels comprising approximately two 
percent of the study area. Our mapped predictions of fire likelihood (connectivity, Figure 37) offered 
exceptional empirical support (rs = 1.00) when evaluated with the MODIS burned area data. The model 
was able to differentiate high fire likelihood (HFL) from chance expectation at the 80th percentile of 
predictions, offering strong support to our decision to use this percentile class to define HFL. In 
summary statistics, across the study area, 19% of predictions were classified as HFL. Of this HFL area, 7% 
was predicted to experience very high negative fire effects, 85% to experience high effects, and 8% to 
experience moderate effects. Patterns of wind and terrain influences on fire likelihood substantially 
overlapped prominent topographic features in our study area, namely the numerous mountain ranges 
that were oriented in a southeast-northwest direction. When winds out of the southwest were 
simulated, areas most conducive to burning were consistently on the immediate windward side of 
mountain ridgelines, contrasting with the least conducive areas, located on the leeward side. Models 
predicted intermediate fire likelihood for the valleys between these mountain ranges. Simulations based 
on winds out of the south showed similar patterns but with reduced fire likelihood for areas on the 
windward side of ridgelines. In general, HFL showed greater dispersal over larger areas where wind 
direction would most facilitate the spread of fire. This was in contrast to concentrated HFL in narrow 
corridors. HFL was absent in areas where dominant winds move downslope. Study region-wide, areas of 
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HFL had a mean elevation of 295 m (s.d. = 122), a mean slope of 6 degrees (13), and a mean topographic 
roughness (i.e., the standard deviation of slope) of 1.35 (2.90). In contrast, areas not characterized as 
HFL had a mean elevation of 396 m (186), a mean slope of 8 degrees (16), and a mean topographic 
roughness of 2.12 (3.89). 

Fire effects in wilderness 
Our HFL estimate area included 1,740 km2 (14.5%) of the 16 wilderness areas within the study area, with 
19%, 74%, and 7% of wilderness-area land classified as HFL predicted to experience very high, high and 
moderate negative fire effects, respectively. By total area characterized as HFL, the Cabeza Prieta (787 
km2) and Kofa (365 km2) Wilderness Areas were most at risk, with high or very high effects likely. The 
area predicted to experience very high effects overlapped with two of the largest fires that occurred in 
2005: the King Valley fire (130 km2) in the Kofa Wilderness and the Growler Peak fire (110 km2) in the 
Cabeza Prieta Wilderness. HFL was also predicted for large portions of the North Maricopa Mountains 
(180 km2) and Woolsey Peak (177 km2) Wilderness Areas, although a large proportion of these 
jurisdictions fall within the Arizona Upland Subdivision and have not experienced a large fire event since 
1984. The Muggins Mountain (49%) and the East Cactus Plain (47%) Wilderness Areas had the highest 
percentage of HFL, and all of the HFL area was predicted to experience high effects. Only the New Water 
Mountains Wilderness was characterized as lacking HFL. 

 
Figure 37: Map of fire likelihood across the lower Sonoran Desert of southwestern Arizona, based on a 
circuit theoretic model of connectivity. Warmer colors indicate relatively high current density, or higher 
likelihood of fire, and cooler colors indicate relatively low current density, or lower likelihood of fire. This 
map depicts a scenario of fire likelihood under conditions of high fire hazard, and is based on fuel 
conditions in 2005. 
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OBJECTIVE 6: Integrate the above models in a spatial decision-support package that informs 
sustainable resource management and recovery of native habitats and species on DOD and adjacent 
lands. 

Task 14: Design and develop scenarios for decision support 
We developed scenarios to assist collaborators with realistic decision-making guidance within the SDSS 
framework. These scenarios were constructed via synthesis of our results relevant to spatial 
relationships between invasive species, climate change and variability, land use, and disturbance. 
Scenario development was focused on the spatial and temporal scales befitting management and 
monitoring at the extent of individual installations or land management jurisdictions. We thus used 
scenario development as a bridge between science and management. Invasive species distribution 
modeling provides an avenue to support ongoing communication and facilitate new inter-jurisdictional 
conversations and efforts to locate and monitor invasive species populations.   

Constructed scenarios presented to stakeholders at the fall 2013 focused around applications of 
these data towards manager’s needs. Each scenario was presented as a way to use existing and 
developed data, at times in conjunction with data that an individual organization might already have. 
The group then discussed applications to management and refined the information needed to make a 
given scenario most useful to management. Four scenarios were presented:  
 
Predicted change of Brassica distribution future climate 2012-2050: early detection and eradication 
In this scenario, current distribution and habitat suitability under future climate were used to show 
stakeholders locations where Brassica has not been found, but is likely to be found in the future. This 
information can be used to focus prevention, early detection, and eradication efforts moving forward. 
This scenario was refined with the addition of a roads layer, due to the propensity of Brassica to spread 
through these corridors.  
 
Cross-boundary management opportunities with extent and spatially explicit distribution of Brassica 
In this scenario, distribution of Brassica was overlaid with management jurisdictions to identify areas for 
mitigation and monitoring within and across jurisdictions. Participants discussed thresholds or triggers 
for action based on abundance or spatial extent of greenup, as well as coordinated action across 
jurisdictions.  
 
Probability of large fire occurrence, connectivity, and mitigation 
In this scenario, we described how the independent layer of high fire likelihood could be overlaid with 
information about known ignition sites, high value areas, or important restricted areas to avoid fire 
ignition or protect key DOD resources. We also demonstrated that fire connectivity models could be 
overlaid with places where invasive plants are expected to increase, in order to identify places where 
fuel connectivity may be diminished across the landscape through “pinch point” management 
locations—places where reducing non-natives will reduce the likelihood of fire spread. The group 
discussed the contribution of invasive versus all herbaceous growth to fire risk, the role of NDVI in fire 
risk, and the potential to overlay grazing maps with fire.  
 
Fire likelihood and wildlife 
In this scenario, habitat suitability for pronghorn and fire likelihood were overlaid with current 
pronghorn range to explore potential impacts of fire on wildlife species of concern. Participants 
discussed the temporal element of the benefits and impacts of fire on pronghorn and other wildlife; in 
the short term, there may be no forage, but in the long term, animals may gravitate towards those 
areas.   
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Task 15: Develop collaborative process and stakeholder workshops 
We identified 14 science or management collaborators representing six different jurisdictions, including 
our two focal DOD installations, for participation in the NAS. Thirteen (93%) of these collaborators 
responded. According to responses to the NAS, all participants were concerned with invasive plants and 
a majority were concerned about observed changes in fire behavior due to both native and non-native 
species within their jurisdictions. Among our target invasive plants, Pennisetum and Brassica were the 
species of greatest concern for 54% and 38% of respondents, respectively. There was broad support for 
the development of fire models and scenarios that integrated remotely sensed data with field data on 
invasive occurrence. Most agencies reported that they were making efforts to work across ownership 
boundaries in order to mitigate and manage the spread of invasive plants. 

Based on our tasks and associated interactions with collaborators, spatial models of fire risk or 
invasion pattern, emerged as key to addressing fundamental management issues. However, 
collaborators also demonstrated a need for more basic information on ecosystem conditions. 
Collaborators expressed strong interest in obtaining our invasive species occurrence databases—both 
field-collected and compiled from external sources—as well as current Landsat TM satellite images 
encompassing installation boundaries. We made these data available upon request. 

Based on the 2011 NAS synthesis and follow-up interactions with project collaborators 
(including the May 2012 IPR meeting in Tucson, AZ, phone interviews in March 2013, and in-person visits 
May 2013), we identified multiple common needs across our study area (Table 9). Generally, these 
needs can be organized into three thematic lines, or classes, of plant invasion, fire risk and threat, and 
communication (Table 9). 

Collaborators identified knowledge of invasive species distribution as a ‘high priority’ in the NAS. 
Similarly, Villarreal et al. (2011) reported that the development of invasive species distribution maps 
were of high priority in the monitoring priority matrix for BMGR-W. Baseline distribution maps of 
invasive populations extend knowledge of both installation and landscape level locations, and also 
provide ready products for resource specialists and installation managers to support decisions on timing 
of DOD activities. Given that we were permitted to collect data within YPG, BMGR-E, and BMGR-W, our 
current landscape models of invasive species risk and distribution are particularly relevant to this 
request. The data we have compiled on invasive species locations from various databases will help fulfill 
this need.  

Our ability to identify fuel load characteristics in the form of invasive vegetation contributions 
and using NDVI will help address concerns on the part of resource and installation managers regarding 
annual potential fire risk and threat (e.g., behavior and hazard). Base managers were particularly wary of 
fire and most interested in the distribution of fire risk. They also noted that the sources of fuel (i.e., 
invasive vs. native herbaceous fine fuels) are less important than identifying locations that are prone to 
burning or that need to be assessed for their burn potential.  
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Table 9. Informational needs identified by stakeholders 
Theme Topic Components 
Non-native plant 
invasion 

Distributions Knowledge of where invasive plants 
occur 

  Identification of potential suitable 
habitat 

 Remote sensing-based solutions to 
invasive species mapping 

Efficient mapping of invasive plant 
distributions, especially when true 
distribution is unknown 

 Determination of potential impacts on 
native species 

 

Fire risk and 
threat 

Fire and fine fuels characterization Determination of: thresholds for fine 
fuel loads and fire spread potential; 
the fuels types that lead to increasing 
severity and intensity; susceptible 
dominant vegetation types; and the 
rates of recovery among different 
vegetation and terrain types 

 Establishment of remote sensing-based 
solutions to capture fire patterns and 
fire risk 

Need for data and maps on annual 
plant productivity and herbaceous 
biomass, fire connectivity, and fire risk 

 Management plan facilitation Context-based scenarios of fire 
outcomes and risk characterization 
translated into reports, software, and 
maps 

 Decision support on DOD installations Understanding where flammable 
herbaceous fuels are likely to develop 
in order to reduce the ‘search space’ 
and help guide decisions about 
operational activities 

Communications 
and data sharing 

Information exchange Efficient information exchange that 
takes firewalls and other agency-
specific limiting factors into 
consideration 

 GIS solutions to managers Acknowledgement of limitations in GIS 
experience, skills, and functionality 
among collaborators through outreach 
to GIS ‘officials’ and by organizing 
collaborator workshops 

 
Finally, the overall lack of synthesized spatially explicit information on invasive species and fine 

fuels is just one of the information challenges currently facing DOD managers and their staff. GIS skills 
vary, and access to spatial data is limited. The ability to work with complex models and interact with 
dynamic tools for analysis is severely limited if not absent. Managers will benefit from a more 
comprehensive baseline database of not only invasive species distributions, but also general GIS ‘base 
layers,’ such as roads and multi-temporal satellite imagery and derived products (e.g., NDVI 
phenometrics). In response to this assessment of capacity on installations, we focused our GIS outreach 
efforts on data and scenarios, rather than specific ‘tools’ (e.g., software products) for conducting 
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dynamic analysis. Furthermore, our discussions with managers were guided by their expressed needs 
and priorities, but we note that many of the analyses and products from the project as a whole could be 
integrated and presented to managers to suit their future needs and interests; for example, the project 
leaves us poised to integrate the BEM projections and fire probability and connectivity modeling in 
future stakeholder interactions. 

Task 16: Tool transfer, training, and presentations 
We provided to the installation managers guidance regarding the tools and models developed under 
each collaborator need (i.e., plant invasions and fire risk) through our formal workshop-based 
information translation and transfer component toward the end of the project (Table 9, Figure 38). As 
noted previously, within DOD installations (and many agencies in the study area), there is wide 
variability in the use of spatial as well as access, analytical skills, and data interpretation. This underlies 
differences in the ability of resource management staff to provide meaningful recommendations to base 
managers. This variability can hinder the use, implementation, and interpretation of data, including the 
adoption of new analytical approaches. Not all spatial data support capacity exists in-house at DOD 
installations or in other agencies in the study region. Instead, some support is being provided by 
contractors, often with a high degree of turnover in staff, leaving installation resource managers and 
decision-makers at risk of losing the institutional memory needed to support the use of information and 
data provided through any process. We have encountered and overcome many of these challenges in 
our past collaborative landscape work, and we know that sufficient planning can make them 
surmountable. Molding our deliverable package to address these issues included product delivery in 
multiple formats (hard copy map product scenario outputs and raw foundational and derived data 
delivery) (Table 10), as well as expanded support or step-wise information exchange. 
 
 

 
Figure 38: Images from the ‘Managers Workshop’ November 15, 2013, designed to foster tech transfer 
and cross-jurisdictional discussions. The meeting was hosted by NAU staff, in collaboration with staff 
from the Gila Bend Air Force Auxiliary Field. 
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Table 10: List of data products delivered to collaborators, given three general ‘needs’ classes identified 
during a formal NAS process. 
 

Data products Completion Needs 
addressed 

Non-native species distribution assessment 
  Sampled presence, cover, and biomass from 2011 and 

2012 Completed 1a 
Habitat suitability models of Pennisetum, Brassica, and 

Schismus Completed 1a 
Remote sensing time-series models of Brassica and 

Schismus Completed 1b 
Evaluation of trajectory of fire risk 

  Fire risk models based on historical fire and NDVI Completed 2a 
Fire behavior and hazard models  Completed 2a 

Prediction of impact under climate change 
  Models of Brassica and Bromus under current climate  Completed 1a,2b 

Models of Brassica and Bromus under future climate  Completed 1a,2b 
Landscape disturbance risk assessment 

  Disturbance risk based on Brassica models and other 
factors Completed 1a 

Ancillary data 
  Compiled non-native species occurrence data Completed 3b 

Time-series phenometrics based on amplitude of NDVI Completed 3b 
Refined topographic data layers Completed 3b 

 
During this project, we encountered varied levels of engagement horizontally (across agencies) 

and vertically (within agencies). Participation and collaboration at each level of resource manager, 
decision maker, and technical GIS staff would lead to greater success, which we define as greater 
agency-level understanding of data uses and greater support to include data products in project 
planning. 
 

Conclusions and Implications for Future Research/Implementation 
Desert ecosystems have high climatic variation that results in complex spatial and temporal patterns in 
plant phenology and occurrence patterns (Van Leeuwen et al. 2010; Sponseller et al. 2012). Precise 
mapping of invasive plant distributions is important to land management agencies seeking to monitor 
and mitigate non-native plant impacts on native flora, biodiversity, and disturbance factors, such as 
wildland fire (Olsson & Morisette 2014). Accurate plant distribution data are also needed for predicting 
distributions or habitat suitability under future climate change scenarios (Bradley et al. 2009, 2012; 
Wang et al. 2014). Spatial models, like those we have developed, that incorporate local-scale non-
stationary factors and other broad-scale, ecologically based phenological predictors can improve 
estimates of species distribution, cover, abundance, and biomass. Moreover, model performance can be 
improved by utilizing important phenological differences between native and non-native plants for 
prediction. 
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Between 2011-2012, detections of Brassica and Schismus were widespread across the study 
area, whereas Pennisetum, Eruca, and Bromus were relatively uncommon. Although our field seasons 
occurred during two relatively dry years, we found consistent spatial trends year after year, and were 
able to identify key invasive species habitat—particularly for Brassica, which appeared to have more 
specific conditions under which it becomes dominant. Schismus appeared to be more of a generalist and 
was found to be almost ubiquitous as a minor component of most ecosystems we sampled in the Lower 
Colorado River Desert (LRCD). Eruca was in the early stages of expansion and will likely cover a much 
more extensive range than it currently inhabits, whereas Bromus and Pennisetum seemed to be better 
suited for upland ecosystems with higher winter and summer precipitation than are typical of the LCRD 
in southwestern Arizona. As a result, we predict that these species will remain rare on DOD lands in 
southwestern Arizona.  

Modeling approaches and performance 
Our iterative and targeted sampling design and habitat suitability models provide practical use of 
existing invasive plant distribution data and utility for developing sampling strata and detecting focal 
species over large geographic areas to satisfy key management objectives. These objectives can include 
1) detecting populations of non-native invasive plants across previously unsampled gradients and 2) 
characterizing the distribution of non-native invasive plants at landscape to regional spatial scales. Our 
project attempted to rigorously examine this design in a desert system where species invasions pose a 
threat to native plant composition and structure that are likely to undergo community shifts in the 
coming decades as a result of climate change. Indeed, climate change may promote invasion by 
increasing the transport of propagules, decreasing the resistance of native species to invasion, reducing 
the space suitable for native species, and creating shifts in ecosystem distributions (Bradley 2010; Diez 
et al. 2012). Thus, our sampling design framework can play a key role in facilitating monitoring and 
mitigation activities by land management agencies. Moreover, our novel approach to the nested 
integration of common and freely available satellite images with field data can be readily extended to 
other species and ecosystems. Our results highlighted where potentially suitable habitats might be 
vulnerable to invasion by one or more of our focal species and where monitoring efforts might be 
focused. Importantly, our methods and results provide a framework for establishing an ‘early warning 
system’ that is critical to helping installation and other land managers to recognize the possible extent of 
future problematic non-native invasive plants across multiple ownerships.  

We found MODIS and Landsat TM to be particularly adequate for describing likelihood of finding 
Brassica, owing to the unique phenology of the species and a strong contrast in green-up with native 
vegetation. Schismus was not as distinct from a spectral or temporal perspective. Across methods, 
remote sensing-derived models of Schismus were not as accurate as similarly-derived models of 
Brassica. Brassica models were improved when we used a SWE approach to mapping, likely due to 
spatial heterogeneity of precipitation causing phenological asynchrony across the study area. Models of 
both species were challenged by relatively low abundances of the target species because of low 
precipitation in both 2011 and 2012.  

Ensemble methods for predicting species distributions, such as those proposed by Thuiller et al. 
(2009) can benefit from the SWE approach to enhance different classes of models when making future 
projections of species distributions (Olsson et al. In prep.). Elith et al. (2010) also point out that 
ensembles including poorly specified models may also improperly confuse model uncertainty with 
prediction errors. While a machine learning (RandomForest) approach was applied in our efforts, the 
SWE method for assigning spatial model weights can be applied to any class of empirical model. SWE 
models incorporating seasonal and annual phenology metrics derived from time series MODIS VI 
showed promise for detecting non-native plant species when germination and growing cycles differ 
from surrounding native plants species. In future studies, we expect the SWE approach to be applied to 
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other classes of models and datasets so as to better characterize non-stationary ecological processes 
important to mapping invasive plant distributions over large areas and complex environments.      

As our results have demonstrated, phenology-based models of invasive species occurrence 
often rely on a large contrast between the phenology of native and invasive species. Desert vegetation is 
often distributed in small diffuse patches during dry years and their spectral signature is largely 
overwhelmed by the prominent reflectance from bareground and geologic substrates (Shupe & Marsh 
2004). The Sonoran Desert is characterized by minimal native vegetative cover, low levels of standing 
dead biomass, and large interspaces composed of bare mineral soil and invasive grasses (Olsson & 
Morisette 2014). When invasive species occur in low abundances (i.e., <25% vegetative cover), those 
contrasts are minimized and instead, multispectral reflectances are dominated by the bare earth 
background. For this reason, we sought approaches to leverage the rich spectral resolution of 
hyperspectral imagery and sought specifically to evaluate a multi-temporal approach to hyperspectral 
remote sensing. Unfortunately, our requests for Hyperion imagery went mostly unfulfilled, providing us 
with the opportunity to assess this potential with just one scene that covered a small part of our study 
area. Given the sparse coverage and the one available scene, we were unable to meet the Go/No-Go 
decision point and objective of evaluating multitemporal hyperspectral imagery for invasive species 
mapping on DOD lands in the Sonoran Desert. Importantly, this circumstance resulted from a lack of 
access to data and does not reflect on the potential of hyperspectral imagery (or our efforts) to meet 
this objective.  

Satellite imagery and derived data: challenges and opportunities 
During the course of our study, Landsat-5 TM went offline, though it was a critical data source. 
Meanwhile, Landsat-7 spectral data have gaps that increase the cross-track from nadir, making it 
difficult to work with over our large study area. Thus, prior to the launch of the Landsat-8 sensor (and 
availability of data in late 2013), we identified a number of alternative satellite image sources that could 
provide similar (if not superior) spatial and spectral features for mapping invasive species. Specifically, 
we acquired and tested imagery from the high spatial resolution WV2 and SPOT sensors for subsets of 
the study area where we had placed numerous plots that were visited in 2011 and 2012. The potential 
benefits of these sensors are largely unexplored, but the spatial and spectral characteristics are well-
designed for vegetation analysis and will likely provide a different perspective on vegetation in dryland 
ecosystems where vegetative condition is largely biased towards dormancy. Our work demonstrated 
that WV2 imagery can perform well in detecting small populations of invasive plants in a southwestern 
desert ecosystem (Sankey et al. 2014). In particular, WV2 image subpixel classification using the MTMF 
technique performed well in mapping a winter annual invasive species of Brassica. Still, robust, 
quantitative estimates of vegetation canopy cover and biomass during extremely dry years will always 
be a challenge in arid ecosystems, even with high resolution data such as WV2. 

Although the use of remote sensing variables (e.g., NDVI, EVI) has been widely and reasonably 
applied to modelling animal habitat, there is substantial potential for bias when remote sensing 
variables are included in models of plant habitat (Bradley et al. 2012). Nevertheless, the growing 
availability of remotely sensed data suggests that their application to habitat suitability models will 
continue to increase. We therefore encourage both plant and animal habitat modelers to interpret 
remote sensing predictor variables relative to the habitat they aim to model by developing hypotheses 
about the ecological relationships those variables might reveal. This practice, along with explicitly stating 
how habitat is defined relative to existing land use or land cover, will help to reduce the likelihood of 
developing biased models and improve overall model interpretation and application (Bradley et al. 
2012).   

In addition to using remote sensing tools in habitat suitability analyses, researchers are 
increasingly using remote sensing to directly map invasive plant distributions. However, the remote 
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characterization of invasive plants remains an underutilized tool, particularly at landscape and regional 
scale (Bradley 2014). Many local-scale studies focus on hyperspectral remote sensing to detect invasive 
species based on their color and/or chemistry. But, our landscape scale results for B. tournefortii 
coupled with a few other studies suggest that unique phenologies of invasive plants could enable 
widespread mapping with satellites such as Landsat and MODIS (Bradley 2014). Our results also 
underscore the need for better communication and collaboration between invasion ecologists and 
scientists trained in remote sensing. Field design in particular is important to consider – measurements 
of percent cover (including absence) within square ‘pixel’-like plots are directly transferrable to remote 
sensing analysis (Bradley 2014, Wang et al., 2014). 

The remote characterization of invasive plants is an underutilized tool for identifying invasions 
and informing models of distribution and invasion risk (Bradley 2014). Beyond the present study, and 
considering the large number of problematic invasive plants and widespread availability of imagery, it is 
likely that there are a number of opportunities for remote detection of invasives that have yet to be 
tested. If indeed invasive species are spectrally or phenologically unique, then collaborations between 
invasion ecologists and scientists trained in remote sensing may prove fruitful (Bradley 2014). 

Implications for future research and implementation 
As deserts globally are threatened by ongoing land cover and climate changes, spatial and temporal 
dynamics in precipitation, fuels and subsequent large fire occurrence will become an increasingly 
important factor in effective fire planning and management. The fire-specific work and applications we 
have developed for this project are transferable to other deserts in North America, as well as globally, 
where annual plant production can be an important component of fuels and where precipitation is 
typically highly heterogeneous. Our modelling approach and associated map products can be used by 
DOD and partners to monitor ignitions and mitigate the occurrence or negative consequence of large 
fire in the lower Sonoran Desert (Gray et al. 2014) and across large portions of the Mojave Desert (e.g., 
Hegeman et al. 2014). Maps of large fire probability will be useful for management decisions, such as 
fuels reductions, prevention programs to curb human-caused ignitions and suppression planning in 
advance of fire occurrence that could result in more rapid response. Our scenario-based maps will allow 
managers to base these decisions on empirical average and ‘worst-case’ conditions reflected by the time 
periods we examined. For instance, management actions based on a high fire probability scenario could 
make the landscape more resilient to extreme events such as those that occurred in 2005. These 
activities, including implementation of adaptive prevention and suppression plans by installation 
managers, will be especially important when and where fire season weather is extreme and likely to 
exacerbate the probability of an ignition becoming a large fire over time. In addition, analyses of fire 
likelihood and effects can contribute new and important information to fire and fuels management in 
the Sonoran Desert and beyond (see Gray & Dickson 2015). Our novel approach to modeling fire 
connectivity addresses challenges in quantifying and communicating wildfire risk and is applicable to 
other ecosystems and management issues globally. 

Our ongoing dialogue with project collaborators on DOD, USFWS, NPS, and BLM lands 
culminated in an interactive, multi-collaborator workshop designed to bring resource (land and 
‘landless’) managers, base managers (decision makers), and technical GIS staff together to learn about 
the use of our products, to support decisions within their specific management needs context, and to 
support their monitoring and treatment planning for invasive species. This workshop focused on the 
integration of outcomes of the remote sensing mapping efforts, fire modeling efforts, and many of the 
scenarios described above. The attendees at the workshop identified assessment of factors connected 
to high fire risk and invasive species spread risk as important information relevant to their work. They 
discussed the value of our maps as easily-interpetable outputs and discussed the possibility of 
prioritizing invasive species control in areas with high fire risk. We discussed options for tranferring the 
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model codes and meta-data to attendee entities, and were told by at least one attending jurisdiction 
that this type of direct tool transfer and information exchange was unprecedented among scientific 
collaborators from other projects. 

Here we highlight some of the lessons learned in this study: 
1. The use of remote sensing techniques for predicting invasive plant parameters should be tightly 

integrated with designed field sampling efforts if model building and monitoring steps are to be 
effective. In light of the dry periods we experienced during sampling (2011-2012), this 
integration was critical to our success, but also helped to illuminate shortcomings in our design; 

2. Sampling in hot desert areas should be as frequent as every three years to capture high and low 
rainfall events or important changes in annual native and non-native plant abundances will be 
missed. Temperature and precipitation patterns in the Sonoran Desert can vary substantially 
enough that two years of field data may not capture a season of high plant productivity. Field 
measurements taken during high productivity periods (e.g., 2005) can be key to the effective 
modeling of recent or ongoing invasive plant distributions; 

3. Control of non-native plant invasions is something that all agency participants in our efforts 
agreed was important;  

4. A standardized, cross-jurisdiction sampling and monitoring design is needed, as planning for 
invasive plant control or vegetation recovery should also occur across neighboring jurisdictions; 

5. There should be greater agency involvement in efforts to implement and monitor a system of 
rapid plots (if everyone contributes, it is less expensive); 

6. The recent advent of tools, such as Google Earth Engine, has permitted extracting data for the 
purposes of building models and generating large-scale predictions easier and faster. This opens 
the door to near real-time monitoring and risk assessment. We see this as an invaluable tool for 
researchers and managers going forward, and one which could enable tight, effective iteration 
between modelers, the models they build, and the managers who use them. This integration 
would help improve the accuracy and ecological realism of models, and would enable 
researchers to develop data products in response to emerging needs. In particular, the ability to 
create scenarios of landscape risk under changing climatic conditions will be critical to invasive 
species monitoring, as they respond quickly to climate and land-use change;  

7. Future directions for further developing analyses and results will entail evaluating the sensitivity 
of the results to different cost specifications. Fine-tuning of models with additional feature 
selection would also improve already strong models. Moreover, exploring the possible 
applications of our cover data generated during sampling might add another critical dimension 
to risk assessment in the context of plant invasions. Namely, risk might be evaluated as a 
function of the abundance and presence of a given invasive species under different climate 
scenarios; 

8. Models based on plant occurrence points should be interpreted as risk of establishment only, 
not risk of abundance or impact. In the future, if suitability models aim to be more management 
relevant, invasion risk models should include abundance as well as occurrence; 

9. Models and maps of large fire probability that were developed for this region are robust to the 
resolution of analysis. Using 1-km NDVI data derived from National Oceanic and Atmospheric 
Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR) sensor, model 
results were similarly robust to the results obtained using 30-m Landsat data. This suggests that 
an NDVI forecasting tool would be appropriate at multiple resolutions and sensor sources; 

10. Models of fire connectivity should account for probabilistic flow across all possible paths, and 
not attempt to constrain the fire spread process to only ‘optimal’ pathways. A deterministic 
connectivity algorithm that optimizes flow also was also used to model and map fire movement. 
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When visually compared to historic burned area data, these results were far less accurate than 
results obtained from a stochastic model of fire connectivity based on circuit theory.  
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